將矩陣化為行最簡階梯形矩陣,求過程

2021-03-03 21:25:45 字數 3828 閱讀 4033

1樓:匿名使用者

使用初等行bai變換

2 4 -2 0

1 0 1 2

-3 1 5 -3 r1-2r2,

dur3+3r2

~0 4 -4 -4

1 0 1 2

0 1 8 -3 r1/4,r3-r1,交zhi換dao行次序~1 0 1 2

0 1 -1 -1

0 0 9 -2 r3/9,r1-r3,r2+r3~1 0 0 20/9

0 1 0 -11/9

0 0 1 -2/9

這樣就得到了回最簡階答梯型矩陣

如何用初等行變換將矩陣化為行階梯型矩陣,求簡單技巧

2樓:墨汁諾

階梯型矩抄

陣的規律是每bai行第一個不為0的數下面的du數都為0,那就可以先把不zhi為0的行放在最上面dao,把為0的行放到下面,為了保持不為0的數不變,只改變後面的數,可以用倍加倍減,將不為0的這一行與為0的這一行加減,以此類推。

用這些技巧可以更快的化簡。化簡本身是比較麻煩的,只能儘可能按規律來才能更快完成,建議用幾個矩陣按這樣的方法做一下熟練就好。

簡單來說就是先把第1列變成0,再解決第2列。

第1行乘上-2,-1,-3加到234行;

第12行可以了,先放著,第4列-第3列;第4列得到0 -1 -2 2 -5;(1個0)

有個-1,乘4加到第3行,得到000-9-24,再用第2列x-3加這行去掉-9,得到4個0;將得到的這4行順序放好看點,就變成行階梯形矩陣。

3樓:匿名使用者

參考一下這個內吧容:

4樓:

如r4-r1-r2,r3-2r1,r1-2r20 -3 3 -1 -6

1 1 -2 1 4

0 -4 4 -4 0

0 6 -6 5 3

r4+2r1,r3*(-1/4),r1+3r3,r2-r30 0 0 2 -6

1 0 -1 0 4

0 1 -1 1 0

0 0 0 3 -9

r1*(1/2),r3-r1,r4-3r10 0 0 1 -3

1 0 -1 0 4

0 1 -1 0 3

0 0 0 0 0

交換行1 0 -1 0 4

0 1 -1 0 3

0 0 0 1 -3

0 0 0 0 0

線性代數 把矩陣化為行最簡形矩陣的方法

5樓:匿名使用者

化成下三角的技巧主要就是「從左至右,從下至上」,找看起來最容易一整行都化為0或者儘可能都化為0的一行(一般是最下面一行),將其放至最後一行,然後通過初等變換將這一行的元素從左至右依次設法都變成0直至無法再化為0為止。

接著從這一行的上一行開始依次從左至右化為0,不停重複直至處理完第一行。最後要檢查首非零元是否從最後一行開始依次往左移,如不是,要換行調整到是為止。例:

2341。

0123。

0001。

這樣就算完成了第一步。接著保證首非零元都是1,並且保證首非零元所在「列」都為0即可,本例可處理為:

1 0 -1 0。

0 1 2 0。

0 0 0 1。

6樓:匿名使用者

把矩陣化為行最簡形矩陣的方法是指對矩陣做初等的行變換,將矩陣化為階梯形。

化簡矩陣的目的是找到一個和原矩陣等價的,形式比較簡單的矩陣,如上三角形,下三角形等。原矩陣和化簡後的矩陣等價是指它們可以互相表出。

化簡的方法主要有:

1.某一行乘以一個非零的常數與另外一個行進行線性運算;

2.交換任意兩行的位置;

注意:化簡矩陣具有靈活性,不同的人化簡的結果也不同,但必須遵守兩個原則:

1.儘量使矩陣的形式簡單,一般化為上三角形;

2.保持矩陣的等價性不變。

7樓:匿名使用者

逐行從前往後化簡 。

求矩陣初等變換化為行最簡行形的技巧t.t

8樓:匿名使用者

1. 一般是從左到右,一列一列處理

2. 儘量避免分數的運算

具體操作:

1. 看本列中非零行的首非零元

若有數a是其餘數的公因子, 則用這個數把第本列其餘的數消成零.

2. 否則, 化出一個公因子

給你個例子看看吧.

例:2 -1 -1 1 2

1 1 -2 1 4

4 -6 2 -2 4

3 6 -9 7 9

--a21=1 是第1列中數的公因子, 用它將其餘數化為0 (*)

r1-2r2, r3-4r2, r4-3r2 得

0 -3 3 -1 -6

1 1 -2 1 4

0 -10 10 -6 -12

0 3 -3 4 -3

--第1列處理完畢

--第2列中非零行的首非零元是:a12=-3,a32=10,a42=3

-- 沒有公因子, 用r3+3r4w化出一個公因子

-- 但若你不怕分數運算, 哪就可以這樣:

-- r1*(-1/3),r2-r1,r3+10r1,r4-3r1

-- 這樣會很辛苦的 ^_^

r1+r4,r3+3r4 (**)

0 0 0 3 -9

1 1 -2 1 4

0 -1 1 6 -21

0 3 -3 4 -3

--用a32把第2列中其餘數化成0

--順便把a14(下次要處理第4列)化成1

r2+r3, r4+3r3, r1*(1/3)

0 0 0 1 -3

1 0 -1 7 -17

0 -1 1 6 -21

0 0 0 22 -66

--用a14=1將第4列其餘數化為0

r2-7r1, r3-6r1, r4-22r1

0 0 0 1 -3

1 0 -1 0 4

0 -1 1 0 -3

0 0 0 0 0

--首非零元化為1

r3*(-1), 交換一下行即得

1 0 -1 0 4

0 1 -1 0 3

0 0 0 1 -3

0 0 0 0 0

注(*): 也可以用a11=2 化a31=4 為0

關鍵是要看這樣處理有什麼好處

若能在化a31為0的前提下, a32化成了1, 那就很美妙了.

注(**): r1+r4 就是利用了1,4行資料的特點,先處理了a12.

總之, 要注意觀察元素的特殊性靈活處理.

9樓:匿名使用者

用初等變換化矩bai陣為行最簡形,主要是du按照次

zhi序進行,

先化為行階梯形,dao再內化為行最簡形,

在這樣按部就班的容次序中,也有靈活性,可以說是技巧吧:

比如,首先使第一行第一列的元素為1,用這個1來把1下面的元素變成零則比較簡單;

同理,之後使第某行第某列的元素為1,用這個1來把1下面的元素變成零則比較簡單;

還有,先把分數變成整數,避免分數運算;

還有,觀察矩陣中的元素,可能是數或者是字母之間的關係,進行一些技巧性運算,等等,

總之,在依照次序進行的前提下,應該不失靈活性,而不是絕對地按照次序一味地死算。

怎麼化成行階梯形矩陣和最簡形矩陣,無腦化了半天化不

不知道你 bai們書上的 行 最簡形 是怎du麼定義的,不知道是不zhi是其它書上的 行dao標準型版 如果就是行標準型的話,那麼還要 權對行階梯型矩陣進一步變換,把每個非零行的第一個不為零的元素化為1,並且每個非零行的第一個非零元素所在的列,只有一個非零元素,才叫做 行標準型 一個矩陣怎麼化成行階...

矩陣的秩就是化為階梯形矩陣後非0行的個數,那如果最後一行是0要怎麼算

最後一行是零行的話,就不算在內,有幾行非零,秩是幾,然後我給你解釋一下如何化階梯型。階梯矩陣中,最後一行全是零也算是非零行嗎 1214 0053 這兩行線性無關,而再加上第三行,線性相關 所以最大無關組的行向量數量是2,秩當然是2啦。最後一行全是0,當然不是非零行啦。所以加上第三行就線性相關了嘛。階...

標準型矩陣和行階梯形矩陣咋區別,最好畫個圖,感覺沒啥區別?再

拿四階矩陣做例子。第一個矩陣是標準型,最後一個是階梯型。從階梯型可以看出矩陣的秩,這個秩是3。如果是方陣的話直接可以看出行列式是0。再有就是矩陣化成階梯型也是解線性方程組的畢業過程。行階梯形矩陣的作用和意義 行階梯形矩陣,可以用於快速判斷矩陣的秩 還可以很快看出方陣是否可逆 另外,還可以看出矩陣中線...