複合函式的奇偶性特點是內偶則偶,內奇同外為什麼

2021-05-17 19:51:33 字數 5222 閱讀 3694

1樓:

f(g(x)),若g(x)為偶

copy函式,當任意取關於

x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。因此內偶則偶。

f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,x2時,有-g(x1)=g(-x1),所以當f為偶時,f(g(x1))=f(-g(x1))=f(g(-x1))則整體為偶。當f為奇時,f(g(x1))=-f(-g(x1))=-f(g(-x1))則整體為奇。

因從對稱的兩個x的值去討論g的值,在用g的值去討論f的值就可以找到之間的關係了。

複合函式的奇偶性特點是:內偶則偶,內奇同外

2樓:匿名使用者

應當根據奇偶性的定義來判斷,複合層數如果更高呢?這裡規律不是很明顯的。上述敘述也是不準確的,內層是y=2x,外層應當是y= x^3

複合函式奇偶性。內奇同外,內偶則偶。對於外層函式有什麼要求嗎?

3樓:匿名使用者

能形成複合函式,即外層函式的定義域要是內層函式值域的一個子集。

複合函式的奇偶性特點是:「內偶則偶,內奇同外為什麼

4樓:無基者無罪

解釋如下:

設一個函式為f(u),且u=g(x),所以變形成為f[g(x)]=f(x)。

若g(x)是偶函式,則f(-x)=f[g(-x)]=f[g(x)]=f(x),所以f(x)是偶函式。

若g(x)是奇函式,則f(-x)=f[g(-x)]=f[-g(x)]=f(-u),如果f(u)奇,則f(-x)=f(-u)=-f(u)=-f(x)

f(x)奇;如果f(u)偶,則f(-x)=f(-u)=f(u)=f(x),f(x)偶。所以f(x)的奇偶性與f(u)相同。

這就解釋了「內偶則偶,內奇同外」。

偶函式:如果對於函式f(x)的定義域內任意一個x,都有f(-x)=f(x),則函式f(x)就叫偶函式。

奇函式:如果對於函式f(x)的定義域內任意一個x,都有f(-x)=-f(x),則函式f(x)就叫奇函式。

5樓:我是一個麻瓜啊

f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1)),因此內偶則偶。

f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,x2時,有-g(x1)=g(-x1),所以當f為偶時,f(g(x1))=f(-g(x1))=f(g(-x1))則整體為偶,當f為奇時,f(g(x1))=-f(-g(x1))=-f(g(-x1))則整體為奇。

對於f(x)=f[g(x)]:

1、若g(x)是偶函式且f(x)是偶函式,則f[x]是偶函式。

2、若g(x) 是偶函式且f(x)是奇函式,則f[x]是偶函式。

3、若g(x)是奇函式且f(x)是奇函式,則f[x]是奇函式。

4、若g(x)是奇函式且f(x)是偶函式,則f[x]是偶函式。

6樓:咋的他還在

原理f(x)=f(u),u=g(x),複合函式f(x)=f(g(x))。

如果內層函式u=g(x)是偶函式,g(-x)=g(x),f(-x)=f(g(-x)) =f(g(x))= f(x),則複合函式f(x)是偶函式。所以內偶則偶。

同理,內奇同外。

它的意思是:如果複合函式裡面為偶函式,則這個複合函式整體為偶函式;如果裡面為奇函式,則需要看外面的那個函式的奇偶性。

設函式y=f(u)的定義域為du,值域為mu,函式u=g(x)的定義域為dx,值域為mx,如果mx∩du≠ø,那麼對於mx∩du內的任意一個x經過u;有唯一確定的y值與之對應,則變數x與y之間通過變數u形成的一種函式關係,這種函式稱為複合函式(***posite function),記為:y=f[g(x)],其中x稱為自變數,u為中間變數,y為因變數(即函式)。

參考資料

7樓:乘金蘭是嫣

它的意思是,如果複合函式裡面為偶函式則這個複合函式整體為偶函式

如果裡面為奇函式

則需要看外面的那個函式的奇偶性

意思就是這個時候外面如果是奇函式則這個複合函式整體為奇函式

是偶函式的話

則複合函式為偶函式

其實你只需要記

內奇外奇為奇

就可以了

因為其他情況都是偶函式

8樓:羊舌芙同巳

f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。因此內偶則偶。

f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,x2時,有-g(x1)=g(-x1),所以當f為偶時,f(g(x1))=f(-g(x1))=f(g(-x1))則整體為偶。當f為奇時,f(g(x1))=-f(-g(x1))=-f(g(-x1))則整體為奇。

因從對稱的兩個x的值去討論g的值,在用g的值去討論f的值就可以找到之間的關係了。

9樓:

f(u)與u=g(x)合成為f[g(x)]=f(x)。

如果g(x)是偶函式,則f(-x)=f[g(-x)]=f[g(x)]=f(x),所以f(x)是偶函式。

如果g(x)是奇函式,則f(-x)=f[g(-x)]=f[-g(x)]=f(-u),如果f(u)奇,則f(-x)=f(-u)=-f(u)=-f(x),f(x)奇;如果f(u)偶,則f(-x)=f(-u)=f(u)=f(x),f(x)偶。所以f(x)的奇偶性與f(u)相同。

這就是「內偶則偶,內奇同外」。

怎麼判斷複合函式的奇偶性

10樓:呼呼__大神

外奇內奇為奇,外奇內偶為偶,外偶內奇為偶,外偶內偶為偶.

f=f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。f為偶函式,因此內偶則偶。 f=f(g(x)),若g(x)為奇函式,當任意取關於x對稱的兩點x1,-x1時,有-g(x1)=g(-x1),所以當f為偶時,f(-g(x1))=f(g(-x1))則整體為偶。

當f為奇時,-f(-gx1))=-f(g(-x1))則整體為奇。

設函式y=f(x)的定義域為du,值域為mu,函式u=g(x)的定義域為dx,值域為mx,如果mx∩du≠ø,那麼對於mx∩du內的任意一個x經過u;有唯一確定的y值與之對應,則變數x與y之間通過變數u形成的一種函式關係,這種函式稱為複合函式(***posite function),記為:y=f[g(x)],其中x稱為自變數,u為中間變數,y為因變數(即函式)。

若函式y=f(u)的定義域是b,u=g(x)的定義域是a,則複合函式y=f[g(x)]的定義域是

d= 綜合考慮各部分的x的取值範圍,取他們的交集。

求函式的定義域主要應考慮以下幾點:

(1)當為整式或奇次根式時,r的值域;

(2)當為偶次根式時,被開方數不小於0(即≥0);

(3)當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;

(4)當為指數式時,對零指數冪或負整數指數冪,底不為0(如,中)。

(5)當是由一些基本函式通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。

(6)分段函式的定義域是各段上自變數的取值集合的並集。

(7)由實際問題建立的函式,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求

(8)對於含引數字母的函式,求定義域時一般要對字母的取值情況進行分類討論,並要注意函式的定義域為非空集合。

(9)對數函式的真數必須大於零,底數大於零且不等於1。

(10)三角函式中的切割函式要注意對角變數的限制。

設y=f(u)的最小正週期為t1,μ=φ(x)的最小正週期為t2,則y=f(μ)的最小正週期為t1*t2,任一週期可表示為k*t1*t2(k屬於r+)

依y=f(u),μ=φ(x)的單調性來決定。即"增+增=增;減+減=增;增+減=減;減+增=減",可以簡化為"同增異減"。

11樓:樓藍可兒

判斷複合函式的奇偶性其實只要掌握好奇偶函式的定義,自己推一下是非常容易的。舉例說明如下:

記f(x)=f[g(x)]——複合函式,則f(-x)=f[g(-x)]

如果g(x)是奇函式,即g(-x)=-g(x) ==f(-x)=f[-g(x)],

則當f(x)是奇函式時,f(-x)=-f[g(x)]=-f(x),f(x)是奇函式;

當f(x)是偶函式時,f(-x)=f[g(x)]=f(x),f(x)是偶函式。

如果g(x)是偶函式,即g(-x)=g(x) =f(-x)=f[g(x)]=f(x),f(x)是偶函式。

所以由兩個函式複合而成的複合函式,當裡層的函式是偶函式時,複合函式的偶函式,不論外層是怎樣的函式;當裡層的函式是奇函式、外層的函式也是奇函式時,複合函式是奇函式,當裡層的函式是奇函式、外層的函式是偶函式時,複合函式是偶函式。

在其它的場合,就不能判斷複合函式的奇偶性了。

12樓:周文大大好帥

複合函式的奇偶性特點是:」內偶則偶,內奇同

外」。f(g(x)),若g(x)為偶函式,當任意取關於x對稱的兩點x1,-x1時,有g(x1)=g(-x1),所以f(g(x1))=f(g(-x1))。因此內偶則偶。

13樓:匿名使用者

其實只要掌握好奇偶函式的定義,自己推一下是非常容易的。

記f(x)=f[g(x)]——複合函式,則f(-x)=f[g(-x)],

如果g(x)是奇函式,即g(-x)=-g(x) ==> f(-x)=f[-g(x)],

則當f(x)是奇函式時,f(-x)=-f[g(x)]=-f(x),f(x)是奇函式;

當f(x)是偶函式時,f(-x)=f[g(x)]=f(x),f(x)是偶函式。

如果g(x)是偶函式,即g(-x)=g(x) ==> f(-x)=f[g(x)]=f(x),f(x)是偶函式。

所以由兩個函式複合而成的複合函式,當裡層的函式是偶函式時,複合函式的偶函式,不論外層是怎樣的函式;當裡層的函式是奇函式、外層的函式也是奇函式時,複合函式是奇函式,當裡層的函式是奇函式、外層的函式是偶函式時,複合函式是偶函式。

在其它的情況下,就不能判斷複合函式的奇偶性了。

14樓:丁永健

無論複合函式有多少層,只有各層都為奇函式時,該複合函式才是奇函式,只要有一層或多層為偶函式,該複合函式就為偶函式。

判斷函式奇偶性,怎麼判斷複合函式的奇偶性

定義法 函式定義域是否關於原點對稱,對應法則是否相同 影象法 f x 為奇函式 f x 的影象關於原點對稱 點 x,y x,y f x 為偶函式 f x 的影象關於y軸對稱 點 x,y x,y 特值法 根據函式奇偶性定義,在定義域內取特殊值自變數,計算後根據因變數的關係判斷函式奇偶性。性質法 利用一...

函式奇偶性的性質函式的奇偶性性質是什麼?

奇函式是中心對稱 偶函式是左右對稱 所有性質都是從這上面得來的 有很多奇函式性質 1 圖象關於原點對稱 2 滿足f x f x 3 關於原點對稱的區間上單調性一致 4 如果奇函式在x 0上有定義,那麼有f 0 05 定義域關於原點對稱 奇偶函式共有的 偶函式性質 1 圖象關於y軸對稱 2 滿足f x...

關於判斷函式的奇偶性,判斷函式奇偶性最好的方法

f x f x 是奇函式,f x f x 是偶函式,1.f x x 2 x f x x 2 x x 2 x,不奇不偶 2.f x e x e x f x e x e x,偶 3.f x e x e x f x e x e x f x 奇 4.f x xsinx f x xsin x xsin x 偶...