1樓:什麼都知道的人
9月17日 12:03 [絕對不等式的解法]解絕對不等式的基本思路:去掉絕對值符號轉化為一般不等式,轉化方法有(1)零點分段法(2)絕對值定義法(3)平方法
例如:解不等式
(1)|3x-5|≥1(2)|x+1|>|2x-1|(3)|x+1|+|x-3|>5
解:(1)由絕對值定義得:
3x-5≥1或3x-5≤-1
∴x≥2或x≤4/3,即為解.
(2)兩邊同時平方,得:
x^2+2x+1>4x^2-4x+1
<=>x^2-2x<0
<=>0<x<2
(3)原不等式等價於:
x<-1 或 -1≤x≤3 或 x>3
-x-1-x+3>5 x+1-x+3>5 x+1+x-3>5由以上得x<-3/2或x>7/2
{chenkai19860520語}這下你該知道了吧!還滿意嗎?
參考文獻:高中數理化
2樓:華彬告淳美
向左轉|向右轉
請放心使用,有問題的話請追問
滿意請及時採納,謝謝,採納後你將獲得5財富值。
你的採納將是我繼續努力幫助他人的最強動力!
3樓:藤迎慕容依白
||x-1|>3-x
x>=1,x-1>=0,|x-1|=x-1x-1>3-x,x>2,符合x>=1
所以x>2
x<1,|x-1|=1-x
1-x>3-x,1>3
不成立所以x>2
|2x+1|>x-1
x>=-1/2,2x+1>=0,|2x+1|=2x+12x+1>x-1,x>-2
所以x>=-1/2
x<-1/2,|2x+1|=-2x-1
-2x-1>x-1
x<0所以x<-1/2
所以x屬於r
4樓:魯鋒雷浦和
-2≤x²+x-6≤2可以化成兩個不等式來解x²+x-6≦2及x²+x-6≧-2
只有x同時滿足這兩個不等式才是其解集
由不等式x²+x-6≦2
化為(x+1/2)^2≦31/4
解得-(√31-1)/2≦x≦(√31-1)/2由不等式x²+x-6≧-2
化為(x+1/2)^2≧15/4
解得x≧(√15-1)/2或
x≦(1-√15)/2
綜合以上,求兩者的交集,通過作數軸得
x的解集為(√15-1)/2≦x≦(√31-1)/2或(1-√31)/2≦x≦(1-√15)/2
含有絕對值的不等式怎麼解
5樓:return小風
|解含絕對值的不等式只有兩種模型,它的解法都是由以下兩個得來:
(1)|x|>1那麼x>1或者x<-1; |x|>3那麼x>3或者x<-3;
即)|x|>a那麼x>a或者x<-a;(兩根之外型)
(2))|x|<1那麼-14或者1-3x<-4,從而又解一次不等式得解集為:x>5/3或者x<-1
又如:|1-3x|<2我把絕對值中的所有式子看成整體,不等式是兩根之內型
則:-2<1-3x<2從而又解一次不等式得解集為:-1/3
解絕對不等式的基本思路:去掉絕對值符號轉化為一般不等式,轉化方法有(1)零點分段法(2)絕對值定義法(3)平方法
解含有絕對值的不等式
比如解不等式|x+2|-|x-3|<4
首先應分為4類討論,分別為當x+2>0且x+3>0時,然後解開絕對值符號,可解出第一個結果5<4,不符合題意,捨去;然後當x+2>0且x+3<0時,解開絕對值可得x<5/2,保留這個結果;下面的過程一樣......然後把沒有被捨去的範圍放在一起取交集,得到的就是答案了。
6樓:匿名使用者
絕對值不等式的常見形式及解法
絕對值不等式解法的基本思路是:去掉絕對值符號,把它轉化為一般的不等式求解,轉化的方法一般有:(1)絕對值定義法;(2)平方法;(3)零點區域法。常見的形式有以下幾種。
1. 形如不等式:|x|0)
利用絕對值的定義得不等式的解集為:-a=a(a>0)它的解集為:x<=-a或x>=a。
3. 形如不等式|ax+b|0)
它的解法是:先化為不等式組:-cc(c>0)它的解法是:先化為不等式組:ax+b>c或ax+b<-c,再利用不等式的性質求出原不等式的解集。
在運用上述方法求絕對值不等式的解集時,如能根據已知條件靈活地運用絕對值不等式的常見形式,不僅可以簡化運算、簡便地求出它的解集,而且有利於培養學生思維靈活性。因為題是活的,用既得方法去解決具體的問題,還得有靈活多變的大腦,讓學生自己去體會數學方法的有效和巧妙,這樣才能行萬里船、走萬里路時,輕鬆如意。
7樓:匿名使用者
同學你好:以下可以給你介紹些方法希望能幫助你。
解含絕對值的不等式只有兩種模型,它的解法都是由以下兩個得來:
(1)|x|>1那麼x>1或者x<-1; |x|>3那麼x>3或者x<-3;
即)|x|>a那麼x>a或者x<-a;(兩根之外型)(2))|x|<1那麼-14或者1-3x<-4,從而又解一次不等式得解集為:x>5/3或者x<-1
又如:|1-3x|<2我把絕對值中的所有式子看成整體,不等式是兩根之內型
則:-2<1-3x<2從而又解一次不等式得解集為:-1/3 8樓:人文漫步者 想要求解這種含有不等式的問題,就需要對它的條件做進一步的假設才可以。 9樓:匿名使用者 1≤|2x-1|<5 像這種題,可以這麼認識, 當2x-1>0時,得1≤2x-1<5,得1≤x<3當2x-1<0時,得-5<2x-1≤-1,得-21/2,3)、x≤-1時,3-x+x+1<1,無解所以綜合得x的解集為(1/2,+∞) 這種題關鍵學會討論。 10樓:吜饅頭 "大於取兩頭,小於取中間!" 例如(1):|x-3|>5 解:x-3>5或x-3<-5 所以得:x>8或x<-2 (2):|2x|<4 解:-4<2x<4 同時除2,得 -2 11樓:匿名使用者 運用分類討論的思想 先去絕對值,然後再解 例如|x-12|>3 1.當x>=12時,|x-12|=x-12|x-12|>3 x-12>3 x>15並且x>=12 所以x>15 2.當x<12時,|x-12|=-(x-12)|x-12|>3 -(x-12)>3 x<9並且x<12 所以x<9 所以不等式的解集為 x>15或x<9 12樓:巴彥格勒順 將未知數分為不同域來考慮,去掉絕對值符號,也就是考慮絕對值內部》0或<0或=0的情況 比如「『』」代表絕對值符號 『x-2』>1 首先令絕對值為0,x-2=0,x=2.此時將域分為x>2和x<2兩個域來考慮。 當x>2時,原式變為x-2>1所以x>3 當x<2時,原式變為-(x-2)>1,所以x<1所以此不等式的解為x<1或x>3 當式子中含有多個絕對值時也用相同方法去掉絕對值符號 13樓:形影網遊卡 初中數學中考真題,含有絕對值的不等式方程,解法很巧妙 解絕對值不等式時,有幾種常見的方法 14樓:喵喵喵 一、 絕對值定義法 對於一些簡單的,一側為常數的含不等式絕對值,直接用絕對值定義即可, 1、如|x| < a在數軸上表示出來。利用數軸可將解集表示為−a< x < a 2、|x| ≥ a同理可在數軸上表示出來,因此可得到解集為x≥ a或x≤ a 3、|ax +b| ≥ c型,利用絕對值性質化為不等式組−c ≤ ax + b ≤ c,再解不等式組。 二、平方法 對於不等式兩邊都是絕對值時,可將不等式兩邊同時平方。 解不等式 |x+ 3| > |x− 1|將等式兩邊同時平方為(x + 3)2 > (x − 1)2得到x2 + 6x + 9 > x2 − 2x + 1之後解不等式即可,解得x > −1 三、零點分段法 對於不等式中含有有兩個及以上絕對值,且含有常數項時,一般使用零點分段法。例 解不等式|x + 1| + |x − 3| > 5 在數軸上可以看出,數軸可以分成x < −1,−1 ≤ x < 3, x ≥ 3三個區間,由此進行分類討論。 當x < −1時,因為x + 1 < 0, x − 3 < 0所以不等式化為 −x− 1 −x + 3 > 5解得x < −322.當−1 ≤x < 3時, 因為x + 1 > 0,x− 3 < 0所以不等式化為x + 1 − x + 3 > 5無解。 當 x ≥ 3時 因為x + 1 > 0 ,x − 3 > 0所以不等式化為x + 1 + x− 3 > 5解得x >72綜上所述,不等式的解為x < −32或x >72。 擴充套件資料 1、實數的絕對值的概念 (1)|a|的幾何意義 |a|表示數軸上實數a對應的點與原點之間的距離. (2)兩個重要性質 ①(ⅰ)|ab|=|a||b| ②|a|<|b|⇔a2(3)|x-a|的幾何意義:數軸上實數x對應的點與實數a對應的點之間的距離,或數軸上表示x-a的點到原點的距離. (4)|x+a|的幾何意義:數軸上實數x對應的點與實數-a對應的點之間的距離,或數軸上表示x+a的點到原點的距離。 2、絕對值不等式定理 (1)定理:對任意實數a和b,有|a+b|≤|a|+|b|,當且僅當ab≥0時,等號成立. (2)定理的另一種形式:對任意實數a和b,有|a-b|≤|a|+|b|,當且僅當ab≤0時,等號成立. 絕對值不等式定理的完整形式:|a|-|b|≤|a±b|≤|a|+|b|. 其中,(1)|a+b|=|a|-|b|成立的條件是ab≤0,且|a|≥|b|; (2)|a+b|=|a|+|b|成立的條件是ab≥0; (3)|a-b|=|a|-|b|成立的條件是ab≥0,且|a|≥|b|; (4)|a-b|=|a|+|b|成立的條件是ab≤0. 15樓:科學普及交流 絕對值不等式解法的基本思路是:去掉絕對值符號,把它轉化為一般的不等式求解,轉化的方法一般有:(1)絕對值定義法;(2)平方法;(3)零點區域法。 16樓: 兩種手段:一,分類討論;二,應用絕對值不等式性質。 關於絕對值不等式的解法 17樓:加菲21日 解決與絕對值有關的問題(如解絕對值不等式,解絕對值方程,研究含有絕對值符號的函式等等),其關鍵往往在於去掉絕對值的符號。 而去掉絕對值符號的基本方法有二:其一為平方,其二為討論。 所謂平方,比如,|x|=3,可化為x^2=9,絕對值符號沒有了! 所謂討論,即x≥0時,|x|=x ;x<0時,|x|=-x,絕對值符號也沒有了! 以下,具體說說絕對值不等式的解法。 首先說「平方法」。 不等式兩邊可不可以同時平方呢?一般來說,有點問題。比如5>3,平方後,5^2>3^2,但1>-2,平方後,1^2<(-2)^2。 ***事實上,本質原因在於函式y=x^2在r上不單調。 但我們知道,y=x^2在r+上是單調遞增的,因此不等式兩邊都是非負時,同時平方,不等號的方向不變,這是可以的。 這裡說到的***單調性的問題,是高一數學的重點內容,現在不明白可以跳過,到時候可一定要用心聽! 有初中數學的基礎,也應該明白,對兩個非負數來說,大的那個數,它的平方也相應會大一些;反過來,平方大一些的數,這個數本來也會大一些。 比如|2x-1|≥1,兩邊同時平方,可得(2x-1)^2≥1, 整理得4x^2-4x≥0,即4x(x-1)≥0,因此x≤0或x≥1 *****===注意*****=== 這裡用到了「一元二次不等式的解法」,現在的初中肯定還是要學一元二次方程的解法的,學不學一元二次不等式的解法,我就不清楚了。如果沒學,那「平方法」先放一放,跳到「討論法」吧——見華麗的分割線! *****===end*****=== 一般地,|f(x)|≥a(a>0),那麼f(x)^2)≥a^2,即f(x)^2)-a^2≥0 因式分解得[f(x)+a}[f(x)-a])≥0,因此f(x))≤-a或f(x)≥a (*) (ps.若a≤0,則|f(x)|≥a的解集為r。想一想,沒問題吧:)) 同理,由|f(x)|≤a(a>0),可得-a≤f(x)≤a。 (**) 熟練了以後,結論(*)、(**)都可以直接使用。 比如|2x-1|<5,由結論(**)(當然,這裡沒有等號,將等號去掉就可以了)可得: -5<2x-1<5,即-27-8x 你看,平方一次,絕對值符號少了一個,但還有一個,怎麼辦?當然再平方一次!但問題是,這次還能平方嗎? 不可以了,因為7-8x的符號未必是正啊!那怎麼辦?討論! 若7-8x<0,即x>7/8,則原不等式顯然成立!(為什麼?) ① 若7-8x≥0,即x≤7/8,則原不等式等價於4(x+1)^2>(7-8x)^2 整理得:4x^2-8x+3<0,即(2x-1)(2x-3)<0,因此1/21/2} 問題解決了! ********************我是華麗的分割線******************** 回到問題的一開始,對於|x-3|-|x+1|<1這樣的不等式,我們更多的時候,可以從一開始進行討論。 |x-3|中的絕對值符號能否去掉?去掉以後,式子會發生怎樣的變化?關鍵在於x>3還是x<3, 因此x與3的大小關係是一個關鍵。 同樣的道理,考察|x+1|,可以知道x與-1的大小關係也是一個關鍵。 於是,在兩個關鍵處,進行如下的討論: (1)若x<-1,則x+1<0,x-3<0, 此時,原不等式可化為-(x-3)+(x+1)<1,即4<1,荒謬,捨去! (2)若-1≤x<3,則x+1≥0,x-3<0, 此時,原不等式可化為-(x-3)-(x+1)<1,即-2x+2<1,解得x>1/2 再考慮到-1≤x<3,因此1/20,x-3≥0, 此時,原不等式可化為(x-3)-(x+1)<1,即-4<1,顯然成立!因此x≥3 綜合(2)(3)的結果可知,原不等式的解集為 那麼對於第一個例子,1≤|2x-1|<5,怎麼用「討論法」,應該沒問題了吧! (1)若2x-1≥0,即x≥1/2,則原不等式可化為1≤|2x-1|<5,…… (2)若2x-1<0,即x<1/2,則原不等式可化為1≤1-2x<5,…… 以下略。 順便說一下,x=1/2時,2x-1=0,因此數學上,把x=1/2叫做式「2x-1」的零點。我們以上 使用的「討論法」,更具體的名稱是「零點分段討論法」。 但就其蘊含的數學思想來說,就是「分類討論」,這可是高中數學的基本思想方法,一定要掌握! 以上,從絕對值的代數意義出發,即「數」的角度,給出瞭解絕對值不等式的兩種常規思路,希望能給你有所啟發。 考慮到絕對值還有著極為有趣的幾何意義,因此從「形」的角度出發,也可以得到一些有意思的解法。 這事實上就涉及到高中數學中另一種極為重要的思想方法,即「數形結合」。 篇幅的關係,就不贅述了。(其實,我也累了……) 比如這道初中競賽題:求|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值。有興趣可以試一試! 再說明一下,http://zhidao.baidu. 這個帖子我也看到了,準備回答的時候(寫了一些,但沒有你現在看到的這個那麼長篇大論),已經封貼了。 還想著白寫了呢,正好你又發問,也算是有緣吧…… 握 教學目標 一 教學知識點 1.掌握 x a與 x 0 型不等式的解法回。答2.ax b c 與 ax b 0 型不等式的解法。二 能力訓練要求 1.通過不等式的求解,加強學生的運算能力。2.提高學生在解決問題中運用整體代換的能力。教學重點 ax b c 與 ax b 0 型不等式的解法。教學難點... 一 幾何意義法 例如 求不等式 x 1的解集 不等式 x 1的解集表示到原點的距離小於1的點的集合,所以不等式 x 1的解集為。二 討論法 例如 求不等式 x 1的解集 當x 0時,原來的不等式可以化為x 1,0 x 1。當x 0時,原來的不等式可以化為 x 1,1 x 0。綜上所述,不等式 x 1... 絕對值不bai 等式的常見形式及解du法 絕對值不等式解zhi 法的基本dao思路是 去掉絕對值符回號,把它轉化為答一般的不等式求解,轉化的方法一般有 1 絕對值定義法 2 平方法 3 零點區域法。常見的形式有以下幾種。1.形如不等式 x 0 利用絕對值的定義得不等式的解集為 a a a 0 它的解...含絕對值不等式解法問題,含有絕對值的不等式怎麼解
絕對值不等式的解法,解絕對值不等式時,有幾種常見的方法
如何怎樣解絕對值不等式含有絕對值的不等式怎麼解