求這個微分方程的特解三階的求解高數求這個微分方程的特解三階的求解

2021-05-21 22:17:35 字數 3199 閱讀 5391

1樓:惜君者

^^特徵方程為r^3+1=0

你的思路是對的,但是你卻不知道立方和公式,即a^3+b^3=(a+b)(a²-ab+b²)

故(r+1)(r²-r+1)=0

得r=-1,r=½ ± √3/2

故通解為y=c1 e^(-x) + e^(x/2)[c2 cos(√3x/2)+c2 sin(√3x/2)]

2樓:匿名使用者

注意特徵根可以為虛根。

以上,請採納。

3樓:匿名使用者

我看你應該是會做的,你畢竟知道寫出特徵方程了,相信解出來之後你也應該會做。但問題是,這個三次方程你解錯了,它有一個根是-1,但不代表另外兩個根也是-1,通過分解因式,原式可寫為(λ+1)*(λ²-λ+1),它有另外兩個虛根。再用尤拉公式,得到三個線性無關解,明白?

不明白再問吧!

4樓:西域牛仔王

特徵方程 t³+1=0,

根 t1=-1,t2=1/2 - √3/2 i,t3=1/2+√3/2 i,

所以微分方程通解為

y=c1e^(-x)+e^(x/2)[c2cos(√3/2 x)+c3sin(√3/2 x)] 。

高數中的微分方程求特解 第六題,求詳細步驟

5樓:惜君者

對應的齊次方程為y''-3y'+y=0

特診方程為r²-3r+2=0

得r=1或r=2

因為r=1是單特徵根【xe^x相當於對應特徵根1】故設特解y*=x(ax+b)e^x【選b】

6樓:j機械工程

這樣子。。。。。。。

微分方程的特解怎麼求

7樓:安貞星

二次非齊次微分方程的一般解法

一般式是這樣的ay''+by'+cy=f(x)

第一步:求特徵根

令ar²+br+c=0,解得r1和r2兩個值,(這裡可以是複數,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,則y=c1*e^(r1*x)+c2*e^(r2*x)

2、若r1=r2,則y=(c1+c2x)*e^(r1*x)

3、若r1,2=α±βi,則y=e^(αx)*(c1cosβx+c2sinβx)

第三步:特解

f(x)的形式是e^(λx)*p(x)型,(注:p(x)是關於x的多項式,且λ經常為0)

則y*=x^k*q(x)*e^(λx) (注:q(x)是和p(x)同樣形式的多項式,例如p(x)是x²+2x,則設q(x)為ax²+bx+c,abc都是待定係數)

1、若λ不是特徵根 k=0 y*=q(x)*e^(λx)

2、若λ是單根 k=1 y*=x*q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*p(x)cosβx或e^(λx)*p(x)sinβx

1、若α+βi不是特徵根,y*=e^λx*q(x)(acosβx+bsinβx)

2、若α+βi是特徵根,y*=e^λx*x*q(x)(acosβx+bsinβx)(注:ab都是待定係數)

第四步:解特解係數

把特解的y*'',y*',y*都解出來帶回原方程,對照係數解出待定係數。

最後結果就是y=通解+特解。

通解的係數c1,c2是任意常數。

拓展資料:

微分方程

微分方程指描述未知函式的導數與自變數之間的關係的方程。微分方程的解是一個符合方程的函式。而在初等數學的代數方程,其解是常數值。

高數常用微分表

唯一性存在定一微 分程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

8樓:匿名使用者

微分方程的特解步驟如下:

一個二階常係數非齊次線性微分方程,首先判斷出是什麼型別的。

然後寫出與所給方程對應的齊次方程。

接著寫出它的特徵方程。由於這裡λ=0不是特徵方程的根,所以可以設出特解。

把特解代入所給方程,比較兩端x同次冪的係數。

舉例如下:

9樓:耐懊鶴

∵齊次方程y''-5y'+6y=0的特徵方程是r²-5r+6=0,則r1=2,r2=3

∴齊次方程y''-5y'+6y=0的通解是y=c1e^(2x)+c2e^(3x) (c1,c2是積分常數)

∵設原方程的解為y=(ax²+bx)e^(2x)

代入原方程,化簡整理得-2axe^(2x)+(2a-b)e^(2x)=xe^(2x)

==>-2a=1,2a-b=0

==>a=-1/2,b=-1

∴原方程的一個解是y=-(x²/2+x)e^(2x)

於是,原方程的通解是y=c1e^(2x)+c2e^(3x)-(x²/2+x)e^(2x) (c1,c2是積分常數)

∵y(0)=5,y'(0)=1 ==>c1+c2=5,2c1+3c2-1=11

∴c1=3,c2=2

故原方程在初始條件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x²/2+x)e^(2x)

即y=(3-x-x²/2)e^(2x)+2e^(3x).

10樓:匿名使用者

微分方程的特解怎麼求?你是80我也不會。有時間我告訴你。

11樓:匿名使用者

這個提示非常難的,我覺得具有這方面的學生或者是老師幫來解答,知道你是學生還是什麼?如果你是學生的話,你可以問以前老師,不要不好意思的

高數:什麼是微分方程的特解,什麼是微分方程的通解?謝謝!

12樓:憶寒嵌玉

通解是指滿足這種形式的函式都是微分方程的解,例如y'=0的通解就是y=c,c是常數.通解是一個函式族

特解顧名思義就是一個特殊的解,它是一個函式,這個函式是微分方程的解,但是微分方程可能還有別的解.如y=0就是上面微分方程的特解.

特解在解非其次方程等一些微分方程有特殊的作用

二階微分方程特解怎麼求的呀謝謝,微分方程的特解怎麼求

r2 r 6 0 r 3 r 2 0 r1 3,r2 2 wi 2 2i 不是特徵根 所以特解形式為 e 2x acos2x bsin2x 床上不好寫,告訴你大體思路吧,後面sin乘cos用倍角公式化為sin2x然後用求特徵根,然後用課本上公式就做出來了 微分方程的特解怎麼求 二次非齊次微分方程的一...

高數微分方程通解特解,微分方程的特解怎麼求

因表示式為cosx 設待定特 解為y acosx bsinx 這是固定用法,a,b為待定係數 代入微分方程y y cosx得 acosx bsinx acosx bsinx cosx 即,回答 2acosx 2bsinx cosx比較係數得到 2a 1,2b 0 特解為y 1 2 cosx 微分方程...

求微分方程的通解,求詳細步驟,這個微分方程通解怎麼求

微分方程的解通常是一個函式表示式y f x 含一個或多個待定常數,由初始條件確定 例如 其解為 其中c是待定常數 如果知道 則可推出c 1,而可知 y cos x 1。一階線性常微分方程 對於一階線性常微分方程,常用的方法是常數變易法 對於方程 y p x y q x 0,可知其通解 然後將這個通解...