x求lim x 2 1 xx的極限

2021-03-10 19:58:17 字數 5831 閱讀 6857

1樓:特老實的和尚

如果不是趨於bai

無窮,du你的方法沒有錯,但zhi是在趨於無窮的情況dao

下,任何版很小的量都要斟權酌是否對於整體有影響。比如lim x->∞(1+1/x)^x=e,如果按你說的方法豈不是應該先對1/x求極限為0,然後原式等於1^x=1?

就是因為1/x雖然只是比1大一點點,但是就這麼一點點,在無窮次方的階乘下也會有質的變化。

那麼同理,2^(1/x)也只比1大了一點點而已,而這一點點和1/x相比是大還是小還是可以忽略,並沒法證明,所以不能先行求極限。

你老師說的沒有錯,但是這道題裡邊的2^(1/x)]並不是所謂「可以先行求極限」的部分。我舉一個「可以先行求極限」的例子:比如limx->0,求(cosx^3+sinx^2)/(cosx^2+sinx)=?

,那麼此時的sinx,sinx^2就是可以先行求極限的部分。因為相對於cosx來說,sinx完全可以忽略。但是,同樣條件下當求(sinx^2+sinx)/sinx的極限時,那麼sinx^2或者sinx肯定都不能忽略。

還有一種情況就是在乘法或者除法的情況下。所以這種情況下因子如果有極限,是可以先求極限的。

2樓:匿名使用者

能先行提出的必須是以因子形式出現的項,這一項必須跟其他的項之間是乘法或除法的關係,否則不能先行提出(提出的意思就像提出因式類似,必須是乘除的)。

3樓:匿名使用者

可以先來行求出

的極限要先行求出

不會源是斷章取義吧 求極限也要講方法

呀不同的極限型別要用不同的方法

在極限分析過程中 可能需要取分析每個部分的變化趨勢 但是 最終是要整個看的

譬如[1/x+2^(1/x)]^x 在x->∞ 時 這是冪指型別的 屬於1 ^∞ 型別 若要用配重要極限做 可以如下

lim[1/x+2^(1/x)]^x 令1/x=t ,x->∞,則t->0

=lim[t+2^t ]^(1/t)

=lim ^ [(t-1+2^t )/t]

= ^ [lim (t-1+2^t )/t]

=e ^ [lim (t-1+2^t )/t]

=e^[ 1 + lim (2^t -1)/t ] 因 2^t -1等價於ln2t

=e^(1+ln2)=2e

4樓:數迷

必須知道,任何一種方法都需要有理論依據

你那種求極限的想法是錯誤的

lim[x→∞] (x+1/x-1)^x 求極限

5樓:曉龍修理

結果為:e^2

解題過程如下:

令y=(x+1/x-1)^x lny=x[ln(x+1)-ln(x-1)]

limlny= limx[ln(x+1)-ln(x-1)]

=lim[ln(x+1)-ln(x-1)]/(1/x)

=lim[1/(x+1)-1/(x-1)]/(-1/x^2)

=lim{2x^2/(x^2-1)

=lim2/(1-1/x^2)=2

limlny=2=lnlimy

limy=e^2

求函式極限的方法:

利用函式連續性,直接將趨向值帶入函式自變數中,此時要要求分母不能為0。

當分母等於零時,就不能將趨向值直接代入分母,因式分解,通過約分使分母不會為零。若分母出現根號,可以配一個因子使根號去除。

如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)

採用洛必達法則求極限,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。符合形式的分式的極限等於分式的分子分母同時求導。

6樓:116貝貝愛

結果為:e

解題過程如下:

lim [x/(x-1)]^x

x→∞=lim [(x-1+1)/(x-1)]^x

x→∞=lim [1+1/(x-1)]^[(x-1)x /(x-1)]

x→∞=lim e^[x /(x-1)]

x→∞=e

求數列極限的方法:

設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:

1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。

2、函式f(x)在點x0的左右極限中至少有一個不存在。

3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。

則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。

7樓:小小芝麻大大夢

lim[x→∞] (x+1/x-1)^x =e^2。

令y=(x+1/x-1)^x,lny=x[ln(x+1)-ln(x-1)]

limlny

= limx[ln(x+1)-ln(x-1)]=lim[ln(x+1)-ln(x-1)]/(1/x)=lim[1/(x+1)-1/(x-1)]/(-1/x^2)=lim{2x^2/(x^2-1)

=lim2/(1-1/x^2)

=2所以 limlny=2=lnlimy

limy=e^2

擴充套件資料:極限的求法有很多種:

1、連續初等函式,在定義域範圍內求極限,可以將該點直接代入得極限值,因為連續函式的極限值就等於在該點的函式值。

2、利用恆等變形消去零因子(針對於0/0型)。

3、利用無窮大與無窮小的關係求極限。

4、利用無窮小的性質求極限。

5、利用等價無窮小替換求極限,可以將原式化簡計算。

6、利用兩個極限存在準則,求極限,有的題目也可以考慮用放大縮小,再用夾逼定理的方法求極限。

7、利用兩個重要極限公式求極限。

8、利用左、右極限求極限,(常是針對求在一個間斷點處的極限值)。

9、洛必達法則求極限。

8樓:幸福的蘭花草

(1)直接求,就是湊常用極限,lim[x→∞]^[2x/(x-1)]=e²

(2)取對數:

lny=x[ln(x+1)-ln(x-1)]=xln[1+2/(x-1)] x→∞ , 2/(x-1)→0,ln[1+2/(x-1)] ~2/(x-1)

(注:ln(1+x)~x x→0時) 所以,lim x→∞ lny=lim x→∞ 2x/(x-1) =2 所以,y的極限就是e²。

希望對你有幫助。

9樓:匿名使用者

解答:lim[x→∞

] (x+1/x-1)^x

=lim[x→∞] ^x

=lim[x→∞]

=lim[x→∞] [(1+1/x)^x]÷lim[x→∞][(1-1/x)^x]

=e÷e^(-1)=e^2

10樓:匿名使用者

^令y=(x+1/x-1)^x lny=x[ln(x+1)-ln(x-1)] ,

limlny= limx[ln(x+1)-ln(x-1)] =lim[ln(x+1)-ln(x-1)]/(1/x)=lim[1/(x+1)-1/(x-1)]/(-1/x^2)

=lim{2x^2/(x^2-1)=lim2/(1-1/x^2)=2, 所以 limlny=2=lnlimy

limy=e^2

11樓:year醫海無邊

都學到極限了,平方差立方差公式應該很常用應該記得吧,x^3-1應該怎麼因式分解的,通分後繼續分子因式分解。

12樓:匿名使用者

錯了。 lny=x*(ln(x+1/x-1))

當x趨於無窮的時候ln(x+1/x-1)=lnx趨於無窮

高數:lim(x->∞)((1+1/x)^x^2)/e^x求極限

13樓:春天的離開

^^^^^bai=lim(e^du(x²ln(1+1/x))-e^x)/x=lime^x(e^(x²ln(1+1/x)-x)-1)/x=lim(x²ln(1+1/x)-x)/xe^(-x)=lim(xln(1+1/x)-1)/e^(-x)=lim(ln(1+1/x)+x(-1/x²)/(1+1/x))/-e^(-x)

=lim(ln(1+1/x)-1/(1+x))/-e^(-x)=lim(-1/x(1+x)+1/(1+x)²)/e^(-x)=lim-e^x/x(1+x)²

=-∞擴充套件資

zhi料

lim(x→∞dao)x^2/e^x怎麼算高數極限版用洛畢塔權

lim(x→∞)x^2/e^x

=lim(x→∞)2x/e^x

=lim(x→∞)2/e^x=0

14樓:匿名使用者

1.這是一個分式求極限,且分子分母趨於無窮型

2.分子使用無窮小替換,意味著分子單獨開始求極限。也就是說運用了極限的四則運算性質,但是使用四則運算是有前提條件的,必須分子分母都必須極限存在,但是這裡明顯分母極限不存在,所以不能使用無窮小替換。

15樓:匿名使用者

替換必須是對因式操作。(1+1/x)^x和arcsinx都不是因式,所以不能替換

16樓:靜若繁華逝

首先對於q2 這種1^無窮

的極限,只能採用湊值來得到兩個重要極限當中的專lim(1+x)^1/x=e(x趨於0)並屬恆等變形來求;而對於q1,要想用lim(1+x)^1/x=e(x趨於0),首先要保證最前面的lim符號能分別移到分子分母上,而分母lim e^x(x趨於無窮)並不存在,所以lim號不能進去,只能通過對分子u^v,化為e^vlnu來求

17樓:sdau小愚

冪指函式,不求導數求極限,u^v,化為e^vlnu

18樓:匿名使用者

上下都有極限才能替換

求極限limx→∞(1+x/2+x)^}(1-x^2)/(1-x)}

19樓:匿名使用者

^實際上化copy簡之後就是

[1+1/(2+x)] ^bai(1+x)即為 ^[(1+x)/(2+x)]

在x趨無窮大的時候

按照du重要極限zhi,[1+1/(2+x)]^(2+x)即趨於daoe

而(1+x)/(2+x)趨於1

所以代入得到極限值為e

limx→+∞[x+√(1+x^2)]^1/x

20樓:116貝貝愛

結果為:1

解題過程如下:

limx→+∞[x+√

(1+x^2)]^1/x

解:l=lim(x->+∞) [x +√(1+x^2)]^(1/x)

lnl=lim(x->+∞) ln[x +√(1+x^2)]/x (∞/∞)

=lim(x->+∞) [1 + x/√(1+x^2) ]/[x +√(1+x^2)]

=lim(x->+∞) [1 + 1/√(1/x^2+1) ]/[x +√(1+x^2)]

=0分子->2,分母->∞

=>l =1

l=lim(x->+∞) [x +√(1+x^2)]^(1/x)=1

求數列極限的方法:

設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:

1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。

2、函式f(x)在點x0的左右極限中至少有一個不存在。

3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。

則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。

極限limx無窮x2xx的結果

x 無窮 lim x 2 x x lim x 1 1 x x lim x x 1 x 0 lim x x 0 2 x 0 lim x x 不存在 求極限limx x x 2 1 x 50 limx x x 2 1 x limx x x 2 1 x 2 x 2 1 x limx x x 2 1 x l...

limx趨向無窮4x21XX

上下襲都除以baix lim x du zhi 4x dao2 1 x x 1 lim x 4x 2 x 2 1 x 2 x x x x 1 x lim x 4 1 x 2 1 1 1 x 1 高數求極限 lim x趨向於正無窮時 4x 2 x 1 x 1 x 2 sinx 的極限 分子分母同時除以...

limx15x4xx1,求limx15x4xx1的極限

分子 分母有理化 即分子分母同時乘以 5x 4 x x 1 具體解題步驟及驗證如下 lim x 1 5x 4 x x 1 可以上下求導呀,可能是你算錯了吧?分子求導得 5 2 5x 4 1 2 x 極限為 5 2 1 2 2,分母求導得 1 所以原極限 2 求limx 1 5x 4 x x 1 的極...