伴隨矩陣AA n,為什麼,線性代數,矩陣A的n次方的行列式 A n A的伴隨矩陣的行列式 A 嗎?等於的話為什麼?

2021-05-18 00:33:26 字數 1928 閱讀 5501

1樓:匿名使用者

aa* = |baia|e

所以 a* = a的行du列式乘以a逆

如果zhi取daoa伴隨的行列專式就是取 a的行列式乘以a逆 的行列式

而a的行列式就是一個數值,屬數值乘以a逆的行列式就等於數值的n此方乘以a逆的行列式,所以|a*|=|a|^n再乘以a逆的行列式值,所以你題目的結果是錯誤的

|a*|=|a|^(n-1)

2樓:匿名使用者

|。|)a*=|a|e

也即是說e中每個元素都乘以|a|。那麼一共有n個。

(因為為n階,所以對角線回上一共答有n個|a|)那麼當取行列式時,一共可以提出n個|a|

即a*|=|a|^n

注意一點:

k|a|,只是乘以其中的一行,或者一列。

ka則是乘以所有的元素。

3樓:戰後的櫻花

逆||^lz寫錯了,zhi應該是|a*|=|a|^(n-1)|a*|=||daoa|a逆|

=|a|^內n*|a逆|

=|a|^n*1/|a|

=|a|^(n-1)

之所以多出來一個n,是由於行列容式的性質

n階行列式把每行每列的公因子提出來的那個東西,等於這個公因子的行(列)次方,你隨便舉一個n階行列式把公因子提出來就顯然看到了

線性代數,矩陣a的n次方的行列式|a^n|=a的伴隨矩陣的行列式|a*|嗎?等於的話為什麼?

4樓:匿名使用者

不相等,|a^n|=|a|^n而|a*|=|a|^(n-1),後者證明過程如圖。經濟數學團隊幫你解答,請及時採納。謝謝!

關於線性代數中的伴隨矩陣。請問|a*|=|a|^(n-1)這個公式中,n是什麼?能舉個例子嗎?

5樓:西域牛仔王

n 是方陣 a 的階數 !!!!

就是方陣的行數(或列數)。

設a是n階矩陣,a*為a的伴隨矩陣 證明|a*|=|a|^(n-1)

6樓:demon陌

利用矩陣運算與行列式的性質證明,需要分為a可逆與不可逆兩種情況。具體回答如圖:

伴隨矩陣是矩陣理論及線性代數中的一個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷髮現與研究。

7樓:匿名使用者

如圖可以利用矩陣運算與行列式的性質證明,需要分為a可逆與不可逆兩種情況。

設n階矩陣a的伴隨矩陣為a* 證明:|a*|=|a|^(n-1)

8樓:匿名使用者

一樓證明不好,a不可逆沒有證明。

看看這個問題,可知:

a不可逆時,adj(a)也不可逆,所以結論成立。

設n階方陣a的伴隨矩陣為a*,當n>2時,證明(a*)*=|a|^n-2a

9樓:zzllrr小樂

^||當a可逆時,

(a*)*=(a^源(-1)|a|)*

=(a^(-1)|a|)^(-1)|a^(-1)|a||bai=(a/|a|)|a|^dun/|a|

=a|a|^(n-2)

當a不可逆時,zhi|a|=0

a*是0矩陣或者秩為1的矩dao陣,

此時(a*)*=0=|a|^n-2a

因此得證

設n階矩陣a的伴隨矩陣為a*證明:|a*|=|a|^(n-1)

10樓:母韶督曼嵐

大家都不幫你我

來幫你因為aa*=|a|e,兩邊同時版乘a逆,

線性代數伴隨矩陣,線性代數中伴隨矩陣

aa a e 那麼同理襲,a a a e 而 a a n 1 故a a a n 1 e 等式兩邊再左乘 a 1 得到 a a n 1 a 1 而a a a 1 故 a 1 a a 於是 a a n 1 a a a n 2 a,就是你要的答案 再對等式aa a e兩邊取轉置,得到 a t a t a ...

求教線性代數A乘以A的伴隨矩陣等於什麼

aa a a a e 如果。a不是方陣呢?因為a a a 1 所以 aa a aa 1 a e a a a a 1 a a e aa 以上,請採納。線性代數中,矩陣,a 是什麼意思?矩陣a 表示a矩陣的伴隨矩陣。伴隨矩陣的定義 某矩陣a各元素的代數餘子式,組成一個新的矩陣後再進行一下轉置,叫做a的伴...

線性代數,求矩陣X,線性代數,求矩陣X

你會求逆矩陣麼?求出x右邊方程的逆矩陣。右邊的矩陣右乘這個逆矩陣就是x了。線性代數求矩陣x 詳細過程,如圖所示。先將方程轉化,看看需要計算那些東西。轉化後發現,需要計算a的行列式 a 2e a的逆矩陣。線性代數 求矩陣x 1 1 0 1 2 0 1 1 0 1 0 0 1 2 1 0 1 1 0 1...