1樓:熱情的張大山
你想說的是什麼是什麼在什麼上的投影吧。(如果按照你說的,影子就是事物的投影)
舉個簡單的例子:正午太陽在頭頂(與地面垂直)時,你的影子就是你在地面上的投影。
a是b在c上的投影,設b與c的夾角為&,則有a=b*cos&(夾角別弄錯!);
投影好像沒有正弦的表達吧。因為光線是垂直照向c的。望採納!
如何利用構造直角三角形的方法求15°的正弦,餘弦,和正切的值?
2樓:匿名使用者
如何利用幾個直角三角形的方法求15度直角三角形是北法初速度
【高一數學】根據正弦餘弦判斷三角形形狀問題,有圖,求【詳細】過程、
3樓:小鬼二尺二
和差化積公式。。。
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
這倆個公式也不用死記硬背
可以用a=(a+b)/2+(a-b)/2
b=(a+b)/2-(a-b)/2推匯出來公式套用到題目中可得
sina=sin[(b+c)/2]/cos[(b+c)/2]=[cosa/2]/[sina/2]
sina=2sin(a/2)cos(a/2)可得sin(a/2)=根號2/2
a/2=45度
a=90度
三角形abc為直角三角形、
【高一數學】正弦餘弦定理求三角形形狀問題,有圖有答案,求【詳細】過程、
4樓:匿名使用者
由韋達定理得:
bcosa=acosb
b/a=cosb/cosa
由正弦定理得:
b/a=sinb/sina
所以,cosb/cosa=sinb/siasinb/cosb=sina/cosa
tana=tanb
a=b所以,這個三角形為等腰三角形
5樓:匿名使用者
^acosb=bcosa
sinacosb=sinbcosa
sinacosb-sinbcosa=0
sin(a-b)=0
a-b=kpai
0腰三角形
2.化角
acosb=bcosa
a*(a^2+c^2-b^2)/2ac=b*(b^2+c^2-a^2)/2bc
(a^2+c^2-b^2)/2c=(b^2+c^2-a^2)/2ca^2+c^2-b^2=b^2+c^2-a^22a^2=2b^2
a^2=b^2
a^2-b^2=0
(a-b)(a+b)=0
a=bora=-b<0(舍)
a>0,b>0
a=b等腰三角形
如何理解什麼是正弦值餘弦值?
6樓:匿名使用者
正弦是sin
是直角三角形的
銳角的對邊比斜邊的值
餘弦cos
是直角三角形的銳角的鄰邊比斜邊的值
正切是tan
是直角三角形的銳角的對邊比鄰邊的值
反正切的cot
是直角三角形的銳角的鄰邊比對邊的值
在△abc中,∠c=90°,把銳角a的鄰邊與對邊的比,叫做∠a的餘切,記作cota
在△abc中,∠c=90°,把銳角a的鄰邊與斜邊的比,叫做∠a的餘弦,記作cosa.
在△abc中,∠c=90°,把銳角a的對邊與鄰邊的比,叫做∠a的正切,記作tana
在△abc中,∠c=90°,把銳角a的對邊與斜邊的比,叫做∠a的正弦,記作sina
7樓:匿名使用者
三角函式
[三角函式]
三角函式
目錄同角三角函式間的基本關係式:
三角函式的誘導公式
正餘弦定理
部分高等內容
特殊三角函式值
三角函式的計算
三角函式定義域和值域
初等三角函式導數
反三角函式
* 反三角函式
三角函式是數學中屬於初等函式中的超越函式的一類函式。它們的本質是任意角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的,其定義域為整個實數域。
另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。
由於三角函式的週期性,它並不具有單值函式意義上的反函式。
三角函式在複數中有較為重要的應用。在物理學中,三角函式也是常用的工具。
基本初等內容
它有六種基本函式(初等基本表示):
函式名 正弦 餘弦 正切 餘切 正割 餘割
在平面直角座標系xoy中,從點o引出一條射線op,設旋轉角為θ,設op=r,p點的座標為(x,y)有
正弦函式 sinθ=y/r
餘弦函式 cosθ=x/r
正切函式 tanθ=y/x
餘切函式 cotθ=x/y
正割函式 secθ=r/x
餘割函式 cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨於被淘汰的函式:
正矢函式 versinθ =1-cosθ
餘矢函式 coversθ =1-sinθ
正弦(sin):角α的對邊比上斜邊
餘弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
餘切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
餘割(csc):角α的斜邊比上對邊
[編輯本段]
同角三角函式間的基本關係式:
·平方關係:
sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2
tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形abc中,
角a的正弦值就等於角a的對邊比斜邊,
餘弦等於角a的鄰邊比斜邊
正切等於對邊比鄰邊,
·三角函式恆等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函式:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
證明:左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右邊
等式得證
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
證明:左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊
等式得證
[編輯本段]
三角函式的誘導公式
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈z)
[編輯本段]
正餘弦定理
正弦定理是指在一個三角形中,各邊和它所對的角的正弦的比相等,即a/sina=b/sinb=c/sinc=2r .
餘弦定理是指三角形中任何一邊的平方等於其它兩邊的平方和減去這兩邊與它們夾角的餘弦的積的2倍,即a^2=b^2+c^2-2bc cosa
[編輯本段]
部分高等內容
·高等代數中三角函式的指數表示(由泰勒級數易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此時三角函式定義域已推廣至整個複數集。
·三角函式作為微分方程的解:
對於微分方程組 y=-y'';y=y'''',有通解q,可證明
q=asinx+bcosx,因此也可以從此出發定義三角函式。
補充:由相應的指數表示我們可以定義一種類似的函式——雙曲函式,其擁有很多與三角函式的類似的性質,二者相映成趣。
[編輯本段]
特殊三角函式值
a 0° 30° 45° 60° 90° 120° 180°
sina 0 1/2 √2/2 √3/2 1 √3/2 0
cosa 1 √3/2 √2/2 1/2 0 -1/2 -1
tana 0 √3/3 1 √3 無 -√3 0
cota 無 √3 1 √3/3 0 -√3/3 無
[編輯本段]
三角函式的計算
冪級數c0+c1x+c2x2+...+**xn+...=∑**xn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+**(x-a)n+...=∑**(x-a)n (n=0..∞)
它們的各項都是正整數冪的冪函式, 其中c0,c1,c2,...**...及a都是常數, 這種級數稱為冪級數.
泰勒式(冪級數法):
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
實用冪級數:
ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞ cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞ arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1) arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1) arctan x = x - x^3/3 + x^5/5 - ... (x≤1) sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞ cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞ arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1) arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1) 在解初等三角函式時,只需記住公式便可輕鬆作答,在競賽中,往往會用到與影象結合的方法求三角函式值、三角函式不等式、面積等等。 傅立葉級數(三角級數) f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx) a0=1/π∫(π..-π) (f(x))dx an=1/π∫(π..-π) (f(x)cosnx)dx bn=1/π∫(π..-π) (f(x)sinnx)dx 三角函式的數值符號 正弦 第一,二象限為正, 第三,四象限為負 餘弦 第一,四象限為正 第二,三象限為負 正切 第一,三象限為正 第二,四象限為負 [編輯本段] 三角函式定義域和值域 sin(x),cos(x)的定義域為r,值域為〔-1,1〕 tan(x)的定義域為x不等於π/2+kπ,值域為r cot(x)的定義域為x不等於kπ,值域為r [編輯本段] 初等三角函式導數 y=sinx---y'=cosx y=cosx---y'=-sinx y=tanx---y'=1/(cosx)^2 y=cotx---y'=-1/(sinx)^2 y=arcsinx---y'=1/√1-x^2 y=arccosx---y'=-1/√1-x^2 y=arctanx---y'=1/(1+x^2) y=arccotx---y'=-1/(1+x^2) [編輯本段] 反三角函式 三角函式的反函式,是多值函式。它們是反正弦arcsin x,反餘弦arccos x,反正切arctan x,反餘切arccot x,反正割arcsec x=1/cosx,反餘割arccsc x=1/sinx等,各自表示其正弦、餘弦、正切、餘切、正割、餘割為x的角。為限制反三角函式為單值函式,將反正弦函式的值y限在y=-π/2≤y≤π/2,將y為反正弦函式的主值,記為y=arcsin x;相應地,反餘弦函式y=arccos x的主值限在0≤y≤π;反正切函式y=arctan x的主值限在-π/2 反三角函式實際上並不能叫做函式,因為它並不滿足一個自變數對應一個函式值的要求,其影象與其原函式關於函式y=x對稱。其概念首先由尤拉提出,並且首先使用了arc+函式名的形式表示反三角函式,而不是f-1(x). 反三角函式主要是三個: y=arcsin(x),定義域[-1,1],值域[-π/2,π/2],圖象用紅色線條; y=arccos(x),定義域[-1,1],值域[0,π],圖象用蘭色線條; y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條; sinarcsin(x)=x,定義域[-1,1],值域 【-π/2,π/2】 證明方法如下:設arcsin(x)=y,則sin(y)=x ,將這兩個式子代如上式即可得 其他幾個用類似方法可得 因為這個函式是複合函式 它是由y u 1 2 和u 1 2x 2複合而成,所以它的導數等於這兩個函式導數的乘積,而u的導數是 4x,這就是為什麼要乘以 4x的原因 高中數學 導數問題 110 這個問題對於我來說太難了 我根本不會 我就是看一看 高中數學導數問題,謝謝 麼 知識點 若矩陣baia的特徵... 1 s 0,正無窮 顯然不成立,x 0,y 1,x y 1 0 2 肯定,取x y是s中元素,則x y 0屬於s3 不一定,例如 s 4 不行,專例如s t 顯然對於屬t 中0和10 1 1不屬於t,但是s包含於t 故2是真命題 因為a 2也滿足條件 ci m並n 解析 集合i表示直角座標系內的所有... baiz 2 a du2 z zhi2 a dao2 x 2 y 2 a 專2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2 4x 2y 2 分母上是實數 不用屬管 x 2 y 2 a 2 2xyi x 2...高中數學導數問題,高中數學導數問題
高中數學集合問題,高中數學集合的概念
高中數學 複數問題,高中數學複數怎麼算