1樓:匿名使用者
只對含有一個變數的函式求導不用下標,一個變數以上的都要用下標
多元複合函式高階偏導求法
2樓:戰wu不勝的小寶
多元複合函式高階偏導求法如下:
一、多元複合函式偏導數
上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫。
偏導數的幾何意義:
表示固定面上一點的切線斜率。
偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。
高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:
f"xx,f"xy,f"yx,f"yy。
f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函式再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。
3樓:匿名使用者
高等數學第七版p70頁,例8
複合函式求導:δ
u/δx=(δu/δr)*(δr/δx)=-x/(r^3)-x/(r^3) 關於x的偏導數:(δu/δx)^2=δ[-x/(r^3)]/δx=-
=-=-
=-=-1/r^3+3x^2/r^5
4樓:zero醬
求複合函式的偏導數,關鍵在於找好路徑。鏈式法則是一個很好的解決工具。
拓展資料:
5樓:閃亮登場
多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。
解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。
一、多元複合函式偏導數
公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫.
多元複合函式求偏導數和全微分有什麼技巧、口訣或者規律嗎?老是出錯怎麼辦?
6樓:闞子寬
不要直接求導求偏導,用微分定義先求微分,再解微商。比如z=f(x²+y²),y=exp(ax),求微分得到:
dz=2f'(x²+y²)(xdx+ydy)dy=aexp(ax)dx
求完微分後,1式令dy=0解出微商dz/dx即得z對x偏導;
2式代入1式消去dy解出微商dz/dx即得y=exp(ax)時z對x的導數。
高等數學多元函式問題 如圖 為什麼偏微分就不能像微分dx一樣約掉 然後多元複合函式求導和全微分為什
7樓:匿名使用者
這與一元函式和二元抄函式的定襲
義域有關,一元函式的bai
定義域是一段區間,dudx對應x軸上的zhi一個線段,dy與daodx成線性關係,導數可以表示為dy/dx,所以能夠約掉;二元函式定義域是二維的面積,函式的增量dz需要x和y聯合確定,單獨的∂u是沒有意義的:
dz=(∂z/∂x)dx+(∂z/∂y)dy顯然z與x不是簡單的線性關係,所以不能直接約掉。
題目中可以這樣做的原因是u、v、w都是t的一元函式,所以:
du=(du/dt)dt
dv=(dv/dt)dt
dw=(dw/dt)dt
而三元函式遵守:
dz=(∂z/∂u)du+(∂z/∂v)dv+(∂z/∂w)dw將du、dv、dw代入上式就得到需要的等式了。
抽象多元複合函式求二階偏導數的公式是什麼? 50
8樓:在下星辰
多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。
解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。
一、多元複合函式偏導數
上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
偏導數和全導數有什麼區別?
9樓:清澈動聽的辣條
二者的適用物件不同。偏導數
針對的是多元函式,全導數針對的是一元函式。
偏導數:求一個函式的偏導數就是當此函式含有多個變數時,在其他變數保持恆定只求之中一個變數的導數。所以說偏導數主要針對多元函式。
全導數:函式z=f(m,n),其中自變數x構成了中間變數m=m(x),n=n(x),且z為關於x的一元函式。這時稱z的導數就為全導數。所以說全導數主要針對複合型一元函式。
拓展資料:
1、在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
2、已知二元函式z=f(u,v),其中u、v是關於x的一元函式,有u=u(x)、v=v(x),u、v作為中間變數構成自變數x的複合函式z,它最終是一個一元函式,它的導數就稱為全導數。全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。對全導數的計算主要包括一一型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。
10樓:忘洛心
區別:
1、偏導數是隻對其中一個變數求導數,物理幾何意義是一個平面(平行於x或y或z軸)上的一條線。
2、全導數是對各個變數求偏導後疊加。
拓展資料:
一、偏導數
在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
在一元函式中,導數就是函式的變化率。對於二元函式研究它的「變化率」,由於自變數多了一個,情況就要複雜的多。
在 xoy 平面內,當動點由 p(x0,y0) 沿不同方向變化時,函式 f(x,y) 的變化快慢一般說來是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。
在這裡我們只學習函式 f(x,y) 沿著平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。
偏導數的表示符號為:∂。
偏導數反映的是函式沿座標軸正方向的變化率。
二、全導數
已知二元函式z=f(u,v),其中u、v是關於x的一元函式,有u=u(x)、v=v(x),u、v作為中間變數構成自變數x的複合函式z,它最終是一個一元函式,它的導數就稱為全導數。
全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。
對全導數的計算主要包括:
型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。
11樓:偷來浮生
偏導數是隻對其中一個變數求
導數,全導數是對各個變數求偏導後疊加。
偏導數是隻對其中一個變數求導數,在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定。
全導數是對各個變數求偏導後疊加。對全導數的計算主要包括一一型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。
在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。
當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。
此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。
按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。
已知二元函式z=f(u,v),其中u、v是關於x的一元函式,有u=u(x)、v=v(x),u、v作為中間變數構成自變數x的複合函式z,它最終是一個一元函式,它的導數就稱為全導數。全導數的出現可以作為一類導數概念的補充,其中滲透著整合全部變數的思想。對全導數的計算主要包括一一型鎖鏈法則、二一型鎖鏈法則、三一型鎖鏈法則,其中二一型鎖鏈法則最為重要,並且可以將二一型鎖鏈法則推廣到更加一般的情況n一型鎖鏈法則。
設z是u、v的二元函式z=f(u,v),u、v是x的一元函式u=u(x)、v=v(x),z通過中間變數u、v構成自變數x的複合函式。這種兩個中間變數、一個自變數的多元複合函式是一元函式,其導數稱為全導數。
12樓:憶惡魔
導數和偏導沒有本質區別,都是當自
變數的變化量趨於0時,函式值的變化量與自變數變化量比值的極限.
一元函式,一個y對應一個x,導數只有一個.二元函式,一個z對應一個x和一個y,那就有兩個導數了,一個是z對x的導數,一個是z對y的導數,稱之為偏導.
拓展資料:導數(derivative)是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df/dx(x0)。
設有二元函式z=f(x,y),點(x0,y0)是其定義域d內一點.把y固定在y0而讓x在x0有增量△x,相應地函式z=f(x,y)有增量(稱為對x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。如果△z與△x之比當△x→0時的極限存在,那麼此極限值稱為函式z=f(x,y)在(x0,y0)處對x的偏導數(partial
derivative)。記作f'x(x0,y0)。
多元函式求偏導,多元複合函式高階偏導求法
多元函式中,x和y沒有任何關係,因此y不需要對x求導,外面只需乘一個8x即可。多元複合函式高階偏導求法 多元複合函式高階偏導求法如下 一 多元複合函式偏導數 上面公式可以簡單記為 連線相乘,分線相加 也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成 不排除個別部分為零 二 多元複合...
高等數學,多元的函式微分學,求複合函式的偏導數或全導數 江湖救急 只做一小題就好,隨便選
數學應該是多做多練習,練習足夠了自然而然就會了,依靠別人解答是不明智的做法,別人做的終究是別人會,而你還是不會。好好加油吧!多元複合函式求偏導數和全微分有什麼技巧 口訣或者規律嗎?老是出錯怎麼辦?不要直接求導求偏導,用微分定義先求微分,再解微商。比如z f x y y exp ax 求微分得到 dz...
多元複合函式求導法則,多元複合函式高階偏導求法
全導抄數的概念就是對只有一襲個自變數而言的.一個多元函式無論與其他函式多少次複合,只要最終只有一個自變數,我們對這個唯一的自變數求導,求得的就是全導數.而多元函式,無論它是否是與多元函式還是一元函式複合,只要最終函式的自變數不止一個,那麼就不存在全導數了,對各個自變數分別求得的就是偏導數.例如z f...