已知連續型隨機變數X的概率密度為f x kx 1,0,x,2,求係數K及分佈函式F x ,計算p 1 5x2 5的值

2021-04-20 20:40:52 字數 1999 閱讀 3223

1樓:匿名使用者

^∫ f(x)dx=1

所以(k/2)*2^2 - 2 = 1

k = -1/2

f(x)=

=∫dao f(x)dx

=(-1/4)x^2 + x

p=∫ f(x)dx

=1/16

已知連續型隨機變數x的概率密度為f(x)={kx+1,0<=x<=2 0,其他 求分佈

2樓:116貝貝愛

^解題過程如下:

∫(0,2)f(x)dx

=∫(0,2)(kx+1)dx

= 2k+2

= 1∴k = -1/2

當0<=x<=2時

f(x)=∫(0到x)f(t)dt

=(-1/4t^2+t)|(0到x)

=-1/4x^2+x

所以x分佈函式為f(x)= 0 , x<0=-1/4x^2+x,0<=x<=2

=1, x>2

p=0,但並不是不可能事件。

3樓:匿名使用者

你好!先由概率密度積分為1求出常數k=-1/2,再由積分求出分佈函式。經濟數學團隊幫你解答,請及時採納。謝謝!

已知連續型隨機變數x的概率密度為f(x)=kx+1,0,x,2,求係數k及分佈函式f(x),計算p{1.5

4樓:暗夜vs死神

這道題目的主bai要在與求k的值,求出

duk值之後其zhi分佈函式的求法是直接對密度dao函式版f進行不定積分,那個概權率也可以直接利用分佈函式算出關於求k值:概率密度在[0,1]區間內積分為1,即可求出。

ps:你的概率密度f和分佈函式f的大小寫寫反了。

已知連續型隨機變數x的概率密度為f(x)=中括號kx+1 0

5樓:匿名使用者

概率密度函式f(x) 在0(

0,2)f(x)dx = ∫(0,2)(kx+1)dx = 2k+2 = 1

∴k = -1/2

分佈函式f(x)就是對f(x)在(-∞,內x)的積分f(x) = 0, x∈(容-∞,0)

-x²/4 + x, x∈[0,2]

1, x∈(2,+∞)

已知連續型隨機變數x概率密度為f(x)={kx+1, 0<=x<=2 {0, 其他 試求(1)k(2)計算p(x≤2)p{3/2

6樓:芮琇瑩左東

(1)因為隨機變數抄x的概襲率密度為

f(x)=

kx+1,

0<x<2

0,其他bai

,所以du

根據密度函式的基本zhi性質,dao有∫

∞?∞f(x)dx=∫0

?∞0dx+∫2

0(kx+1)dx+∫∞

20dx=2k+2=1

k=?1

2(2)p(1<x<2)=∫2

1(?12

x+1)dx=14

7樓:匿名使用者

1. 利用f(x)在【0,2】上的積分為1,可求出k=-0.5

2.p(x<=2)=1

3.p(3/2

已知連續型隨機變數x概率密度為f(x)={kx, 0<=x<=2 0, 其他} 試求(1)k (2)p{x<=5}:p{x=5}:f(x)

8樓:匿名使用者

∫f(x)dx=1,積分下上限是0和2,可知k=1/2p=∫f(x)dx=1,積分下上限是0和5p=∫f(x)dx=0,積分上下限是5和5f(x)=p(x<=x)

當版x<0時,權f(x)=0

當0==2時,f(x)=1

最後寫到一起就好了解畢

已知連續型隨機變數X概率密度為fxkx

0到2 f x dx 0到2 kx 1 dx 1 2kx 2 x 0到2 2k 2 1 所以內k 1 2 當0 x 2時,f x 0到x f t dt 1 4t 2 t 0到x 1 4x 2 x 所以x分佈函式 容為f x 0 x 0 1 4x 2 x,0 x 2 1,x 2 p f 5 2 f 3...

已知連續型隨機變數M的概率密度為f x Ax B,1x3 0,其他,且知M在

兩個方程 積分 1,3 ax b dx 4a 2b 1 2 積分 1,2 ax b dx 3a 2b 積分 2,3 ax b dx 2.5a b解方程 設連續性隨機變數x的概率密度為f x ax b 1 因為f x 是密度函式,所以 積分 1 3 f x dx 4a 2b 1 又由已知,積分 2 3...

已知連續型隨機變數X的密度函式為fxx,0x

已知連bai續型隨機變數x的密度函式,那du麼對其在負無窮到正無zhi窮上進行積分dao的值為1 所以 上限 回答1,下限0 x dx 上限a,下限1 2 x dx 0.5x2 代入上限1,下限0 2x 0.5x2 代入上限a,下限1 0.5 2a 0.5a2 1.5 2a 0.5a2 1 1,即a...