計算曲面積分x 2 y 2 z 2)ds,其中是球面x 2 y 2 z 2 a 2 a0)

2021-04-21 23:22:00 字數 2590 閱讀 9856

1樓:星光下的守望者

不用那麼麻煩

把曲面公式代入被積函式中

∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4

計算曲面積分 ∫∫(x^2+y^2+z^2)^-0.5ds,其中 ∑是球面x^2+y^2+z^2=a^2(z>0)

2樓:匿名使用者

∫∫(x^2+y^2+z^2)^-0.5ds=∫∫ads

=a*(2πa²)

=2πa³

曲面積分可以用曲面方程化簡被積函式;被積函式為內1,積分結果為曲面面積;球表容面積為4πa²,本題由於z>0,因此只是半個球,所以是2πa²

高數曲面積分 ,設∑是球面x^2+y^2+z^2=a^2,則曲面積分(x+y+z)^2ds=?

3樓:夢色十年

4πa^4。

原式=∫∫

(x²+y²+z²+2xy+2yz+2xz)ds=∫∫(x²+y²+z²)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a ²ds +0+0+0

=a² •4πa²

=4πa^4

注:1、∫∫(x²+y²+z²)ds=∫∫a ²ds (利用曲面積分可將曲面方程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積分的對稱性)

4樓:匿名使用者

^高數曲面積分 ,設∑是球面x^2+y^2+z^2=a^2,則曲面積分(x+y+z)^2ds=?

原式=∫∫(x²+y²+z²+2xy+2yz+2xz)ds=∫∫(x²+y²+z²)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a ²ds +0+0+0

=a² •4πa²

=4πa^4

注:1、∫∫(x²+y²+z²)ds=∫∫a ²ds (利用曲面積分可將曲面方程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積分的對稱性)

計算曲面積分∫∫∑[ds/z],其中∑是球面x^2+y^2+z^2=a^2被平面z=h(0<h<a)截出的頂部

5樓:匿名使用者

球面方程寫為:z=√(a²-x²-y²)

∂z/∂x=-x/√(a²-x²-y²),∂z/∂y=-y/√(a²-x²-y²)

ds=√(1+(∂z/∂x)²+(∂z/∂y)²)dxdy

=√[a²/(a²-x²-y²)] dxdy

=a/√(a²-x²-y²) dxdy

則∫62616964757a686964616fe59b9ee7ad9431333330353539∫ (1/z) ds

=∫∫ 1/(a²-x²-y²) dxdy

用極座標

=∫∫ r/(a²-r²) drdθ

=∫[0→2π]dθ∫[0→√(a²-h²)] r/(a²-r²) dr

=2π∫[0→√(a²-h²)] r/(a²-r²) dr

=π∫[0→√(a²-h²)] 1/(a²-r²) d(r²)

=-2πln|a²-r²| [0→√(a²-h²)]

=2π(lna²-lnh²)

=4πln(a/h)

希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的"選為滿意回答"按鈕,謝謝。

高數曲面積分∫∫(x+y+z)ds,其中σ為球面x^2+y^2+z^2=a^2在第一卦限中的部分

6樓:匿名使用者

解題過程如下圖:

積分發展的動力源自實際應用中的需求。實際操作中,有時候可以用粗略的方式進行估算一些未知量,但隨著科技的發展,很多時候需要知道精確的數值。要求簡單幾何形體的面積或體積,可以套用已知的公式。

比如一個長方體狀的游泳池的容積可以用長×寬×高求出。但如果游泳池是卵形、拋物型或更加不規則的形狀,就需要用積分來求出容積。物理學中,常常需要知道一個物理量(比如位移)對另一個物理量(比如力)的累積效果,這時也需要用到積分。

7樓:海闊天空

看似簡單。但是計算有點麻煩。我給你整理了一下。

計算 ∫ ∫∑(x^2+y^2)ds,其中為∑球面x^2+y^2+z^2=a^2 計算曲面積分

8樓:匿名使用者

z=±√aa-xx-yy,

z'x=±(-x/√aa-xx-yy),

z'y=±(-y/√aa-xx-yy),

ds=√1+(z'x)^2+(z'y)^2dxdy=adxdy√aa-xx-yyyy,

∑在xoy面的投影區域d是xx+yy《aa,原式=∫∫〔內∑容上半球面〕…+∫∫〔∑下半球面〕…化成d上的二重積分並用極座標計算得到

=2a∫〔0到2π〕dt∫〔0到a〕【rrr/√aa-rr】dr=2aπ∫〔0到a〕【(aa-rr-aa)/√aa-rr】d(aa-rr)

=2aπ∫〔0到a〕【(√aa-rr)-aa/√aa-rr】d(aa-rr)

=2aπ【-(2/3)aaa+2aaa】

=8aaaaπ/3。

為上半球面z 4 x 2 y 2,則曲面積分zds

被平面 1 z 0,x y 4,下側 則 與 1構成封閉曲面,用高斯公式 1 xydydz z 2dzdx y 2dxdy y 0 0 dxdydz 被積函式只剩下y,由於區域關於xoz面對稱,y是奇函式,所以結果為0綜上,上面積分為0.下面將補的 1減出去即可 1 xydydz z 2dzdx y...

計算由旋轉曲面z1x2y2與xoy座標面所圍成的立

注意到任意z作截面,面積為pi 1 z 故體積是pi 1 z 在0到1上積分 計算由曲面z 2 x 2 y 2及z x 2 y 2 所圍成的立體的體積 首先將兩個方程並列找出兩個曲面相交的曲線.通過消去z,得到 2 x2 x2 2y2 即x2 y2 1 所以,此曲線位於半徑為1的圓柱面上.那麼x和y...

曲面y1,z0,x2y2z,yx2所圍立體的

解 根據題意分析知,所圍成的立體的體積在xy平面上的投影是d y 1與y x2圍成的區域內 容 自己作圖 故 所圍成的立體的體積 x2 y2 dxdy 2 0,1 dx x2 y2 dy 2 0,1 x2 1 3 x 4 x 6 3 dx 2 x3 3 x 3 x 5 5 x 7 21 0,1 2 ...