1樓:景煊承恩霈
^^平方關係
sin^2(α)
cos^2(α)=1
cos(2a)=cos^2(a)-sin^2(a)=1-
2sin^2(a)=2cos^2(a)-1
sin(2a)=2sin(a)cos(a)
tan^2(α)
1=1/cos^2(α)
2sin^2(a)=1-cos(2a)
cot^2(α)
1=1/sin^2(a)
積的關係
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒數關係
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
商的關係
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sinβ
cosβ
tanβ
cotβ
secβ
cscβ
360°k
αsinα
cosα
tanα
cotα
secα
cscα
90°-α
cosα
sinα
cotα
tanα
cscα
secα
90°α
cosα
-sinα
-cotα
-tanα
-cscα
secα
180°-α
sinα
-cosα
-tanα
-cotα
-secα
cscα
180°
α-sinα
-cosα
tanα
cotα
-secα
-cscα
270°-α
-cosα
-sinα
cotα
tanα
-cscα
-secα
270°
α-cosα
sinα
-cotα
-tanα
cscα
-secα
360°-α
-sinα
cosα
-tanα
-cotα
secα
-cscα
﹣α-sinα
cosα
-tanα
-cotα
secα
-cscα
兩角和與差的三角函式
cos(α
β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ
sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α
β)=(tanα
tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1
tanα·tanβ)
和差化積
公式sinα
sinβ=2sin[(α
β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α
β)/2]sin[(α-β)/2]
cosα
cosβ=2cos[(α
β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α
β)/2]sin[(α-β)/2]
積化和差公式
sinα·cosβ=(1/2)[sin(α
β)sin(α-β)]
cosα·sinβ=(1/2)[sin(α
β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α
β)cos(α-β)]
sinα·sinβ=-(1/2)[cos(α
β)-cos(α-β)]
倍角公式
sin(2α)=2sinα·cosα=2/(tanα
cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα·cscα
三倍角公式
sin(3α)
=3sinα-4sin^3α
=4sinα·sin(60°
α)sin(60°-α)
cos(3α)
=4cos^3α-3cosα
=4cosα·cos(60°
α)cos(60°-α)
tan(3α)
=(3tanα-tan^3α)/(1-3tan^2α)
=tanαtan(π/3
α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
n倍角公式
sin(nα)=ncos^(n-1)α·sinα-c(n,3)cos^(n-3)α·sin^3α
c(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-c(n,2)cos^(n-2)α·sin^2α
c(n,4)cos^(n-4)α·sin^4α-…
半形公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1
cosα)/2)
tan(α/2)=±√((1-cosα)/(1
cosα))=sinα/(1
cosα)=(1-cosα)/sinα
cot(α/2)=±√((1
cosα)/(1-cosα))=(1
cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα
1))csc(α/2)=±√((2secα/(secα-1))
輔助角公式
asinα
bcosα=√(a^2
b^2)sin(α
φ)(tanφ=b/a)
asinα
bcosα=√(a^2
b^2)cos(α-φ)(tanφ=a/b)
萬能公式
sin(a)=
(2tan(a/2))/(1
tan^2(a/2))
cos(a)=
(1-tan^2(a/2))/(1
tan^2(a/2))
tan(a)=
(2tan(a/2))/(1-tan^2(a/2))
降冪公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1
cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1
cos(2α))
三角和的三角函式
sin(α
βγ)=sinα·cosβ·cosγ
cosα·sinβ·cosγ
cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α
βγ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α
βγ)=(tanα
tanβ
tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
其它公式
1sin(a)=(sin(a/2)
cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a)
sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
推導公式
tanα
cotα=2/sin2α
tanα-cotα=-2cot2α
1cos2α=2cos^2α
1-cos2α=2sin^2α
1sinα=[sin(α/2)
cos(α/2)]^2
三角恆等變換所有公式。
2樓:假面
兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
半形公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
萬能公式:
半形的正弦、餘弦和正切公式(降冪擴角公式)
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
擴充套件資料:
常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。
倍角公式,是三角函式中非常實用的一類公式。就是把二倍角的三角函式用本角的三角函式表示出來。在計算中可以用來化簡計算式、減少求三角函式的次數,在工程中也有廣泛的運用。
和差化積公式:包括正弦、餘弦、正切和餘切的和差化積公式,是三角函式中的一組恆等式,和差化積公式共10組。在應用和差化積時,必須是一次同名(正切和餘切除外)三角函式方可實行。
若是異名,必須用誘導公式化為同名;若是高次函式,必須用降冪公式降為一次。
可以只記上面四個公式的第一個和第三個。
如果對誘導公式足夠熟悉,可以在運算時把餘弦全部轉化為正弦,那樣就只記住第一個公式就行了。
用的時候想得起一兩個就行了。
無論是正弦函式還是餘弦函式,都只有同名三角函式的和差能夠化為乘積。這一點主要是根據證明記憶,因為如果不是同名三角函式,兩角和差公式後乘積項的形式都不同,就不會出現相抵消和相同的項,也就無法化簡下去了。
三角函式公式大全
一 倍角公式 1 sin2a 2sina cosa 2 cos2a cosa 2 sina 2 1 2sina 2 2cosa 2 1 3 tan2a 2tana 1 tana 2 注 sina 2 是sina的平方 sin2 a 二 降冪公式 1 sin 2 1 cos 2 2 versin 2 ...
三角函式的換算公式,三角函式的換算公式
sinx sin x cosx cos x tanx tan x sin x sinx cos x cosx sin x 1 2 cosx cos x 1 2 sinx 奇變偶不變,符號看象限 求常見三角函式換算公式 兄die 你去買本小甘吧 上面什麼公式都有 不用這麼麻煩的 不貴 三角函式的誘導公...
三角函式的誘導公式,三角函式誘導公式的作用和用法
一 三角函式誘導公式的作用 可以將任意角的三角函式轉化為銳角三角函式。例如 1 sin390 sin 360 30 sin30 1 2.2 tan225 tan 180 45 tan45 1.3 cos150 cos 90 60 sin60 3 2.二 三角函式誘導公式的用法 1 公式一到公式五函式...