三角公式所有公式大全,三角函式公式大全

2022-02-25 11:44:47 字數 6062 閱讀 2300

1樓:景煊承恩霈

^^平方關係

sin^2(α)

cos^2(α)=1

cos(2a)=cos^2(a)-sin^2(a)=1-

2sin^2(a)=2cos^2(a)-1

sin(2a)=2sin(a)cos(a)

tan^2(α)

1=1/cos^2(α)

2sin^2(a)=1-cos(2a)

cot^2(α)

1=1/sin^2(a)

積的關係

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

倒數關係

tanα

·cotα=1

sinα

·cscα=1

cosα

·secα=1

商的關係

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

sinβ

cosβ

tanβ

cotβ

secβ

cscβ

360°k

αsinα

cosα

tanα

cotα

secα

cscα

90°-α

cosα

sinα

cotα

tanα

cscα

secα

90°α

cosα

-sinα

-cotα

-tanα

-cscα

secα

180°-α

sinα

-cosα

-tanα

-cotα

-secα

cscα

180°

α-sinα

-cosα

tanα

cotα

-secα

-cscα

270°-α

-cosα

-sinα

cotα

tanα

-cscα

-secα

270°

α-cosα

sinα

-cotα

-tanα

cscα

-secα

360°-α

-sinα

cosα

-tanα

-cotα

secα

-cscα

﹣α-sinα

cosα

-tanα

-cotα

secα

-cscα

兩角和與差的三角函式

cos(α

β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ

sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α

β)=(tanα

tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1

tanα·tanβ)

和差化積

公式sinα

sinβ=2sin[(α

β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α

β)/2]sin[(α-β)/2]

cosα

cosβ=2cos[(α

β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α

β)/2]sin[(α-β)/2]

積化和差公式

sinα·cosβ=(1/2)[sin(α

β)sin(α-β)]

cosα·sinβ=(1/2)[sin(α

β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α

β)cos(α-β)]

sinα·sinβ=-(1/2)[cos(α

β)-cos(α-β)]

倍角公式

sin(2α)=2sinα·cosα=2/(tanα

cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

三倍角公式

sin(3α)

=3sinα-4sin^3α

=4sinα·sin(60°

α)sin(60°-α)

cos(3α)

=4cos^3α-3cosα

=4cosα·cos(60°

α)cos(60°-α)

tan(3α)

=(3tanα-tan^3α)/(1-3tan^2α)

=tanαtan(π/3

α)tan(π/3-α)

cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

n倍角公式

sin(nα)=ncos^(n-1)α·sinα-c(n,3)cos^(n-3)α·sin^3α

c(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-c(n,2)cos^(n-2)α·sin^2α

c(n,4)cos^(n-4)α·sin^4α-…

半形公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1

cosα)/2)

tan(α/2)=±√((1-cosα)/(1

cosα))=sinα/(1

cosα)=(1-cosα)/sinα

cot(α/2)=±√((1

cosα)/(1-cosα))=(1

cosα)/sinα=sinα/(1-cosα)

sec(α/2)=±√((2secα/(secα

1))csc(α/2)=±√((2secα/(secα-1))

輔助角公式

asinα

bcosα=√(a^2

b^2)sin(α

φ)(tanφ=b/a)

asinα

bcosα=√(a^2

b^2)cos(α-φ)(tanφ=a/b)

萬能公式

sin(a)=

(2tan(a/2))/(1

tan^2(a/2))

cos(a)=

(1-tan^2(a/2))/(1

tan^2(a/2))

tan(a)=

(2tan(a/2))/(1-tan^2(a/2))

降冪公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1

cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1

cos(2α))

三角和的三角函式

sin(α

βγ)=sinα·cosβ·cosγ

cosα·sinβ·cosγ

cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α

βγ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α

βγ)=(tanα

tanβ

tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

其它公式

1sin(a)=(sin(a/2)

cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

csc(a)=1/sin(a)

sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

推導公式

tanα

cotα=2/sin2α

tanα-cotα=-2cot2α

1cos2α=2cos^2α

1-cos2α=2sin^2α

1sinα=[sin(α/2)

cos(α/2)]^2

三角恆等變換所有公式。

2樓:假面

兩角和與差的三角函式:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

半形公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

萬能公式:

半形的正弦、餘弦和正切公式(降冪擴角公式)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

擴充套件資料:

常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。

倍角公式,是三角函式中非常實用的一類公式。就是把二倍角的三角函式用本角的三角函式表示出來。在計算中可以用來化簡計算式、減少求三角函式的次數,在工程中也有廣泛的運用。

和差化積公式:包括正弦、餘弦、正切和餘切的和差化積公式,是三角函式中的一組恆等式,和差化積公式共10組。在應用和差化積時,必須是一次同名(正切和餘切除外)三角函式方可實行。

若是異名,必須用誘導公式化為同名;若是高次函式,必須用降冪公式降為一次。

可以只記上面四個公式的第一個和第三個。

如果對誘導公式足夠熟悉,可以在運算時把餘弦全部轉化為正弦,那樣就只記住第一個公式就行了。

用的時候想得起一兩個就行了。

無論是正弦函式還是餘弦函式,都只有同名三角函式的和差能夠化為乘積。這一點主要是根據證明記憶,因為如果不是同名三角函式,兩角和差公式後乘積項的形式都不同,就不會出現相抵消和相同的項,也就無法化簡下去了。

三角函式公式大全

一 倍角公式 1 sin2a 2sina cosa 2 cos2a cosa 2 sina 2 1 2sina 2 2cosa 2 1 3 tan2a 2tana 1 tana 2 注 sina 2 是sina的平方 sin2 a 二 降冪公式 1 sin 2 1 cos 2 2 versin 2 ...

三角函式的換算公式,三角函式的換算公式

sinx sin x cosx cos x tanx tan x sin x sinx cos x cosx sin x 1 2 cosx cos x 1 2 sinx 奇變偶不變,符號看象限 求常見三角函式換算公式 兄die 你去買本小甘吧 上面什麼公式都有 不用這麼麻煩的 不貴 三角函式的誘導公...

三角函式的誘導公式,三角函式誘導公式的作用和用法

一 三角函式誘導公式的作用 可以將任意角的三角函式轉化為銳角三角函式。例如 1 sin390 sin 360 30 sin30 1 2.2 tan225 tan 180 45 tan45 1.3 cos150 cos 90 60 sin60 3 2.二 三角函式誘導公式的用法 1 公式一到公式五函式...