三角函式的誘導公式,三角函式誘導公式的作用和用法

2022-09-26 16:28:32 字數 5452 閱讀 5940

1樓:是你找到了我

一、三角函式誘導公式的作用:可以將任意角的三角函式轉化為銳角三角函式。例如:

1、sin390°=sin(360°+30°)=sin30°=1/2.

2、tan225°=tan(180°+45°)=tan45°=1.

3、cos150°=cos(90°+60°)=sin60°=√3/2.

二、三角函式誘導公式的用法:

1、公式一到公式五函式名未改變, 公式六函式名發生改變。

2、公式一到公式五可簡記為:函式名不變,符號看象限。即α+k·360°(k∈z),﹣α,180°±α,360°-α的三角函式值,等於α的同名三角函式值,前面加上一個把α看成銳角時原函式值的符號。

3、對於kπ/2±α(k∈z)的三角函式值,

①當k是偶數時,得到α的同名函式值,即函式名不改變;

②當k是奇數時,得到α相應的餘函式值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇變偶不變)然後在前面加上把α看成銳角時原函式值的符號。(符號看象限)

擴充套件資料:

常用的誘導公式:

sin (α+k·360°)=sinα(k∈z).

cos(α+k·360°)=cosα(k∈z).

tan (α+k·360°)=tanα(k∈z).

cot(α+k·360°)=cotα (k∈z).

sec(α+k·360°)=secα (k∈z).

csc(α+k·360°)=cscα (k∈z).

sin(π+α)=-sinα.

cos(π+α)=-cosα.

tan(π+α)=tanα.

cot(π+α)=cotα.

sec(π+α)=-secα.

csc(π+α)=-cscα.

2樓:萵苣姑娘

作用:可以將任意角的三角函式轉化為銳角三角函式.

比如:sin390°=sin(360°+30°)=sin30°=1/2.

tan225°=tan(180°+45°)=tan45°=1.

cos150°=cos(90°+60°)=sin60°=√3/2.

規律:縱變橫不變,正負看象限

54個誘導公式,若一個一個的去死背,是一件很痛苦的事.但如果記住並會用八個字:

「奇變偶不變,符號看象限」【有的叫「豎變橫不變,符號看象限」】便可免除這一痛苦.

怎麼理解這八個字?有以下要點:

❶ 誘導角:有0°,90°,180°,270°,360°五個,「奇變偶不變」就是針對這五個誘導角說的.

90°和270°是90°的1倍和3倍,因此屬「奇」;0°,180°,360°是90°的0倍,2倍和4倍,因此

屬「偶」.90°±α,270°±α,都要「變」;0°±α,180°±α,360°±α,都「不變」.變什麼?

怎麼變?變的是函式名稱,方法是正餘互變:正弦變餘弦,餘弦變正弦;正切變餘切,餘切變正切;正割變餘割,餘割變正割.【豎變橫不變,則是指這些誘導角的終邊所在的位置說的,90°

和270°的終邊在y軸上,因此屬「豎變」;0°,180°,360°的終邊在x軸上,屬「橫不變」】

❷ 符號看象限:在使用誘導公式時,千萬記住:無論誘導角後面的α有多大,都要把它看作「銳

角」,並由此決定用哪個象限的符號.如sin(90°+500°)=cos500°,誘導角是90°,因此sin變cos

把500°看作銳角,那麼90°+500°就要看作是第二象限的角,在第二象限內,sin為正,故變成cos後仍取正號.再如tan(180°-425°)=-tan425°,這是因為誘導角是180°,屬「偶不變」,425°

要看成銳角,那麼180°-425°就是第二象限的角,在第二象象限內tan為負,故變化後前面要加負

號.❸記住六個三角函式在四個象限裡的符號.六個三角函式分為三組:

①sin,csc;②cos,sec;③tan,cot;每一組內的兩個函式無論在哪個象限,它們的符號總是相同的.然後按上面的順序

記住:第一象限:+++;第二象限:+--;第三象限:--+;第四象限:-+-.

❹ 明白了上面的規矩和道理,誘導角就可任意選擇.比如你舉的例子:sin(17π/2-α)=cosα

這是因為17(π/2)是90°的17倍,屬「奇」,sin要變cos,17π/2-α就看成90°-α屬第一象限,第

一象限的sin為正,故cos前面取正號.sin(18π/2-α)=sin(9π-α)=sinα,這是因為18(π/2)是90°的偶數倍,屬「不變」,因此仍是sin,符號則取sin在第二象限的符號.

❺第❹所述是要很熟練時才能用,因為容易出錯,比較穩妥還是把過大的角的三角函式先用360°±α 變為小於360°的三角函式,然後再用誘導公式變為銳角三角函式較好.如你的例子:

sin(17π/2-α)=sin(8π+π/2-α)=sin(π/2-α)=cosα;

sin(18π/2-α)=sin(9π-α)=sin(8π+π-α)=sin(π-α)=sinα.

這裡的誘導角都是8π,是2π的4倍,函式名稱不變,符號都取第一象限的符號,因為π/2-α和

π-α都要看成銳角.

3樓:左巴

事實上,以上答主提出的作用,都只是誘導公式作用的冰山一角。

誘導公式真正最大的作用,在於其為三角函式的性質打下了完美鋪墊。誘導公式已經體現了三角函式包括週期性在內的一些性質,其最小正週期。包括你會在誘導公式中發現正弦函式就是奇函式這個事實,它已經被規定了。

這才是它在數學上最大的作用。

三角函式所有的誘導公式,

4樓:匿名使用者

公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα (k∈z)

cos(2kπ+α)=cosα (k∈z)

tan(2kπ+α)=tanα (k∈z)

cot(2kπ+α)=cotα(k∈z)

公式二: 設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)= -sinα

cos(π+α)=-cosα

tan(π+α)= tanα

cot(π+α)=cotα

公式三: 任意角α與-α的三角函式值之間的關係(利用 原函式 奇偶性):

sin(-α)=-sinα

cos(-α)= cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)= sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五: 利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)= cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六: π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

推算公式:3π/2 ± α與α的三角函式值之間的關係:

sin(3π/2+α)=-cosα

sin(3π/2-α)=-cosα

cos(3π/2+α)=sinα

cos(3π/2-α)=-sinα

tan(3π/2+α)=-cotα

tan(3π/2-α)=cotα

cot(3π/2+α)=-tanα

cot(3π/2-α)=tanα

誘導公式記憶口訣:"奇變偶不變,符號看象限"。

5樓:匿名使用者

作用:可以將任意角的三角函式轉化為銳角三角函式. 比如:

sin390°=sin(360°+30°)=sin30°=1/2. tan225°=tan(180°+45°)=tan45°=1. cos150°=cos(90°+60°)=sin60°=√3/2.

規律:縱變橫不變,正負看象限 54個誘導公式,若一個一個的去死背,是一件很痛苦的事.但如果記住並會用八個字:

「奇變偶不變,符號看象限」【有的叫「豎變橫不變,符號看象限」】便可免除這一痛苦. 怎麼理解這八個字?有以下要點:

? 誘導角:有0°,90°,180°,270°,360°五個,「奇變偶不變」就是針對這五個誘導角說的.

90°和270°是90°的1倍和3倍,因此屬「奇」;0°,180°,360°是90°的0倍,2倍和4倍,因此屬「偶」.90°±α,270°±α,都要「變」;0°±α,180°±α,360°±α,都「不變」.變什麼?

怎麼變?變的是函式名稱,方法是正餘互變:正弦變餘弦,餘弦變正弦;正切變餘切,餘切變正切;正割變餘割,餘割變正割.

【豎變橫不變,則是指這些誘導角的終邊所在的位置說的,90° 和270°的終邊在y軸上,因此屬「豎變」;0°,180°,360°的終邊在x軸上,屬「橫不變」】 ? 符號看象限:在使用誘導公式時,千萬記住:

無論誘導角後面的α有多大,都要把它看作「銳角」,並由此決定用哪個象限的符號.如sin(90°+500°)=cos500°,誘導角是90°,因此sin變cos 把500°看作銳角,那麼90°+500°就要看作是第二象限的角,在第二象限內,sin為正,故變成cos後仍取正號.再如tan(180°-425°)=-tan425°,這是因為誘導角是180°,屬「偶不變」,425° 要看成銳角,那麼180°-425°就是第二象限的角,在第二象象限內tan為負,故變化後前面要加負號.

?記住六個三角函式在四個象限裡的符號.六個三角函式分為三組:

①sin,csc;②cos,sec;③tan,cot;每一組內的兩個函式無論在哪個象限,它們的符號總是相同的.然後按上面的順序記住:第一象限:

+++;第二象限:+--;第三象限:--+;第四象限:

-+-. ? 明白了上面的規矩和道理,誘導角就可任意選擇.

比如你舉的例子:sin(17π/2-α)=cosα 這是因為17(π/2)是90°的17倍,屬「奇」,sin要變cos,17π/2-α就看成90°-α屬第一象限,第一象限的sin為正,故cos前面取正號.sin(18π/2-α)=sin(9π-α)=sinα,這是因為18(π/2)是90°的偶數倍,屬「不變」,因此仍是sin,符號則取sin在第二象限的符號.

?第?所述是要很熟練時才能用,因為容易出錯,比較穩妥還是把過大的角的三角函式先用360°±α 變為小於360°的三角函式,然後再用誘導公式變為銳角三角函式較好.

如你的例子: sin(17π/2-α)=sin(8π+π/2-α)=sin(π/2-α)=cosα; sin(18π/2-α)=sin(9π-α)=sin(8π+π-α)=sin(π-α)=sinα. 這裡的誘導角都是8π,是2π的4倍,函式名稱不變,符號都取第一象限的符號,因為π/2-α和 π-α都要看成銳角.

高一三角函式誘導公式怎麼用

誘導公式和 奇變偶不變,符號看象限 都是對三角函式的處理方法,兩者只要完全掌握一個,另一個大概弄清楚,以防萬一,就可以了。你想以哪個為主?解 因為sin a sina,cos a cosa 所以sin a cos a sina cosa 2 3 所以 sina cosa 2 2 3 2 即 sin ...

三角函式的換算公式,三角函式的換算公式

sinx sin x cosx cos x tanx tan x sin x sinx cos x cosx sin x 1 2 cosx cos x 1 2 sinx 奇變偶不變,符號看象限 求常見三角函式換算公式 兄die 你去買本小甘吧 上面什麼公式都有 不用這麼麻煩的 不貴 三角函式的誘導公...

三角函式sin,cos,tan,三角函式sin,cos,tan各等於什麼邊比什麼邊

不知道你學習了弧度制沒有。如果沒有的話,你還是用科學計算器算,科學計算器一定有計算三角函式的功能的,你買一部就知道了。如果你學了弧度制 在計算器出現之前,人們一般用高等數學的泰勒式 sin x x x 3 3 x 5 5 x 7 7 x 9 9 x 11 11 cos x 1 x 2 2 x 4 4...