1樓:愛這一剎那
三角函式是數學中屬於初等函式中的超越函式的一類函式。它們的本質是任意角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的,其定義域為整個實數域。
另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。
由於三角函式的週期性,它並不具有單值函式意義上的反函式。
三角函式在複數中有較為重要的應用。在物理學中,三角函式也是常用的工具。
基本初等內容
它有六種基本函式(初等基本表示):
函式名 正弦 餘弦 正切 餘切 正割 餘割
(見:函式圖形曲線)
三角函式圖形曲線在平面直角座標系xoy中,從點o引出一條射線op,設旋轉角為θ,設op=r,p點的座標為(x,y)有
正弦函式 sinθ=y/r
餘弦函式 cosθ=x/r
正切函式 tanθ=y/x
餘切函式 cotθ=x/y
正割函式 secθ=r/x
餘割函式 cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨於被淘汰的函式:
正矢函式 versinθ =1-cosθ
餘矢函式 coversθ =1-sinθ
正弦(sin):角α的對邊比上斜邊
餘弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
餘切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
餘割(csc):角α的斜邊比上對邊
[編輯本段]同角三角函式間的基本關係式:
·平方關係:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·積的關係:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒數關係:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關係:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形abc中,
角a的正弦值就等於角a的對邊比斜邊,
餘弦等於角a的鄰邊比斜邊
正切等於對邊比鄰邊,
·[1]三角函式恆等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函式:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
asinα+bcosα=(a²+b²)^(1/2)sin(α+t),其中
sint=b/(a²+b²)^(1/2)
cost=a/(a²+b²)^(1/2)
tant=b/a
asinα-bcosα=(a²+b²)^(1/2)cos(α-t),tant=a/b
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
tan(2α)=2tanα/[1-tan²(α)]
·三倍角公式:
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1+cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan²(α/2)]
cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=(sinα/2+cosα/2)²
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
證明:左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右邊
等式得證
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
證明:左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊
等式得證
[編輯本段]三角函式的誘導公式
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈z)
[編輯本段]正餘弦定理
正弦定理是指在三角形中,各邊和它所對的角的正弦的比相等,即a/sina=b/sinb=c/sinc=2r .
餘弦定理是指三角形中任何一邊的平方等於其它兩邊的平方和減去這兩邊與它們夾角的餘弦的積的2倍,即a^2=b^2+c^2-2bc cosa
角a的對邊於斜邊的比叫做角a的正弦,記作sina,即sina=角a的對邊/斜邊
斜邊與鄰邊夾角a
sin=y/r
無論y>x或y≤x
無論a多大多小可以任意大小
正弦的最大值為1 最小值為-1
[編輯本段]部分高等內容
·高等代數中三角函式的指數表示(由泰勒級數易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此時三角函式定義域已推廣至整個複數集。
·三角函式作為微分方程的解:
對於微分方程組 y=-y'';y=y'''',有通解q,可證明
q=asinx+bcosx,因此也可以從此出發定義三角函式。
補充:由相應的指數表示我們可以定義一種類似的函式——雙曲函式,其擁有很多與三角函式的類似的性質,二者相映成趣。
特殊角的三角函式:
角度a 0° 30° 45° 60° 90° 120° 180°
1.sina 0 1/2 1 3/2 1 3/2 0
2.cosa 1 3/2 2/2 1/2 0 -1/2 -1
3.tana 0 1/3 1 3 / -3 0
4.cota / 3 1 1/3 0 -1/3 /
[編輯本段]三角函式的計算
冪級數c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它們的各項都是正整數冪的冪函式, 其中c0,c1,c2,...cn...及a都是常數, 這種級數稱為冪級數.
泰勒式(冪級數法):
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
實用冪級數:
ex = 1+x+x2/2!+x3/3!+...+xn/n!+...
ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)
sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)
arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 - ... (x≤1)
sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)
在解初等三角函式時,只需記住公式便可輕鬆作答,在競賽中,往往會用到與影象結合的方法求三角函式值、三角函式不等式、面積等等。
三角函式,求高人解答,三角函式問題,求高人解答
sin 6 1 2,cos 6 3 2,sin 2 3 3 2,cos 2 3 1 2 6r的終邊與單位圓交點是 3 2,1 2 2 3的終邊與單位圓的交點為 1 2,3 2 即餘弦值為橫座標,正弦值為縱座標 另外,角與單位圓交點p向x軸作垂線垂點為m,記圓心為o,則有向線段om為該角的餘弦線,有向...
三角函式sin,cos,tan,三角函式sin,cos,tan各等於什麼邊比什麼邊
不知道你學習了弧度制沒有。如果沒有的話,你還是用科學計算器算,科學計算器一定有計算三角函式的功能的,你買一部就知道了。如果你學了弧度制 在計算器出現之前,人們一般用高等數學的泰勒式 sin x x x 3 3 x 5 5 x 7 7 x 9 9 x 11 11 cos x 1 x 2 2 x 4 4...
三角函式的疑惑,求解答,三角函式的一個疑惑,求解答!
我認為書上的解答有誤。應該是 當x 2,時,wx 4 w 2 4,w 4 y sinx的單調遞減區間為 2k 2,2k 3 2 k z w 2 4 2k 2,w 4 2k 3 22k 1 2 w 2k 5 4 w的取值範圍是 2k 1 2,2k 5 4 k z是無窮多個間斷的區間。例如 1 2,1 ...