1樓:從小就愛玩
概率分佈函式是概bai率論的基本概du念之一。在zhi研究一個隨dao機變數ξ取值小於某一數內值x的概率容,這概率是x的函式,稱這種函式為隨機變數ξ的分佈函式,簡稱分佈函式!常用f(x)=p(ξ 望採納!謝謝! 2樓:小小嘟 不是同bai 一個東西。概率分佈du函式是概率論的zhi基本概念之一。在dao研究一個隨機變數內ξ取值小於某容一數值x的概率,這概率是x的函式,稱這種函式為隨機變數ξ的分佈函式,簡稱分佈函式! 常用f(x)=p(ξ 邊緣分佈函式和聯合分佈函式有什麼區別? 3樓:月滿花山西滿樓 類比說明: 已知邊緣分佈函式相當於已知 p(a), p(b). 已知聯合分佈函式相當於已知 p(ab),和 p(a), p(b). 邊緣分佈函式只分別刻畫了x,y. 而 聯合分佈函式, 刻畫了x,y 以及x,y 的關係。 隨機變數組(x1,x2,...,xn)作為一個整體的分佈規律稱為聯合分佈 各個變數自己也有自己的分佈規律,就是某個變數的邊緣分佈有時候也會討論變數組的一個子集的邊緣分佈 概率密度和分佈函式什麼區別呢? 4樓: 概率密度和分佈函式的區別是概念不同、描述物件不同、求解方式不同。 1、概念不同:概率指事件隨機發生的機率,對於均勻分佈函式,概率密度等於一段區間(事件的取值範圍)的概率除以該段區間的長度,它的值是非負的,可以很大也可以很小;分佈函式是概率統計中重要的函式,正是通過它,可用數學分析的方法來研究隨機變數。分佈函式是隨機變數最重要的概率特徵,分佈函式可以完整地描述隨機變數的統計規律,並且決定隨機變數的一切其他概率特徵。 2、描述物件不同:概率密度只是針對連續性變數而言,而分佈函式是對所有隨機變數取值的概率的討論,包括連續性和離散型。 3、求解方式不同:已知連續型隨機變數的密度函式,可以通過討論及定積分的計算求出其分佈函式;當已知連續型隨機變數的分佈函式時,對其求導就可得到密度函式。對離散型隨機變數而言,如果知道其概率分佈(分佈列),也可求出其分佈函式;當然,當知道其分佈函式時也可求出概率分佈。 5樓:eunice楊 一、從數學上看,分佈函式f(x)=p(x變數x的值小於x的概率。這個意義很容易理解。 概率密度f(x)是f(x)在x處的關於x的一階導數,即變化率。如果在某一x附近取非常小的一個鄰域δx,那麼,隨機變數x落在(x, x+δx)內的概率約為f(x)δx,即p(x 換句話說,概率密度f(x)是x落在x處「單位寬度」內的概率。「密度」一詞可以由此理解。 二、一元函式下. 概率分佈函式是概率密度函式的變上限積分,就是原函式. 概率密度函式是概率分佈函式的一階導函式. 多元函式下. 聯合分佈函式是聯合密度函式的重積分. 聯合密度函式是聯合分佈函式關於每個變數的偏導. 三、概率密度只是針對連續性變數而言,而分佈函式是對所有隨機變數取值的概率的討論,包括連續性和離散型; 已知連續型隨機變數的密度函式,可以通過討論及定積分的計算求出其分佈函式;當已知連續型隨機變數的分佈函式時,對其求導就可得到密度函式。 對離散型隨機變數而言,如果知道其概率分佈(分佈列),也可求出其分佈函式;當然,當知道其分佈函式時也可求出概率分佈。 6樓:匿名使用者 設:概率分佈函式為:f(x) 概率密度函式為:f(x) 二者的關係為: f(x) = df(x)/dx 即:密度函式f 為分佈函式 f 的一階導數。或者分佈函式為密度函式的積分。 7樓:匿名使用者 如果x離散型隨機變數,定義概率質量函式為fx(x),pmf其實就是高中所學的離散型隨機變數的分佈律,即fx(x)=pr(x=x) 比如對於擲一枚均勻硬幣,如果正面令x=1,如果反面令x=0,那麼它的pmf就是 fx(x)=0 if x? 不是滴,概率分佈指的是離散型隨機變數的概率分佈的那個 概率分佈函式是指離散型隨機變數的函式。不懂的話可以繼續問我,助人為樂記得采納哦。概率密度和分佈函式什麼區別呢?概率密度和分佈函式的區別是概念不同 描述物件不同 求解方式不同。1 概念不同 概率指事件隨機發生的機率,對於均勻分佈函式,概率密度等於一... 如果分佈函式是連續可微的,對其求導就得到概率密度函式,如果是離散的情況,概率分佈函式是密度函式的和。不知道概率密度函式連續的情況下,為什麼能直接用分佈函式求導來求概率密度函式?請教題主 f x 連續,原函式求導才是他本身 是什麼意思?概率密度函式是概率分佈函式求導嗎 如果分佈函式是連續可微的,對其求... 答 首先,隨機變數分為離散型和連續性。對於離散型隨機變數來說,若隨機變數取值的可能結果較少,則用分佈率可以很方便的表示其概率分佈情況 有些時候隨機變數取值佈滿整個空間,所以要用到分佈函式表示概率,分佈律不好表示,這句話是針對取值可列舉但無限多或者連續性隨機變數來說的。分佈函式的定義是 設x是一個隨機...概率分佈和分佈函式的關係,概率密度和分佈函式什麼區別呢?
概率密度函式是概率分佈函式求導嗎
概率論裡面關於分佈律,分佈函式,密度函式之間是神馬關係啊