哪位大神能將傅立葉變換給我解釋清楚呢 特別是隨時間變化的離散

2021-03-21 23:15:35 字數 5391 閱讀 4863

1樓:匿名使用者

就是用三角函式模擬任何的函式啊,物理意義就是為了更加方便進行分析。

進行分析我們都有一個把實際的東西進行數學建模的過程,這其中會忽略一些次要因素,會有一定的簡化和抽象,更加方便進行計算機的計算。比如電視機的訊號問題,以前的都是模擬訊號,所以畫質很差,但是現在採用的數字訊號,就可以用一系列的1和0來模擬任何東西了,只要分段的段數足夠多,實際的精度還是很大的,畫質就會比較好了。

所以理論上用sinnx和cosnx,當n取的足夠多的時候,實際上是可以模擬任何函式的,這在極限概念是成立的。呵呵,不知道有沒有說清楚,淺見!

離散傅立葉變換dft和離散時間傅立葉變換dtft的區別

2樓:阿樓愛吃肉

一、兩者的實質不同:

1、離散傅立葉變換dft的實質:離散時間傅立葉變換。

2、離散時間傅立葉變換dtft的實質:序列的傅立葉變換。

二、兩者的結果不同:

1、離散傅立葉變換dft的結果:傅立葉分析方法是訊號分析的最基本方法,傅立葉變換是傅立葉分析的核心,通過它把訊號從時間域變換到頻率域,進而研究訊號的頻譜結構和變化規律。

2、離散時間傅立葉變換dtft的結果:原訊號如果是非周期函式,dtft變換後是連續函式;原訊號如果是周期函式,dtft變換後是離散函式。

三、兩者的週期不同:

1、離散傅立葉變換dft的週期:

(1)從序列dft與序列ft之間的關係考慮x(k)是對頻譜x(ejω)在[0,2π]上的n點等間隔取樣,當不限定k的取值範圍在[0,n-1]時,那麼k的取值就在[0,2π]以外,從而形成了對頻譜x(ejω)的等間隔取樣。由於x(ejω)是週期的,這種取樣就必然形成一個週期序列。

(2)從dft與dfs之間的關係考慮。x(k)= ∑n=x(n) wnexp^nk,當不限定n時,具有週期性。

(3)從wn來考慮,當不限定n時,具有週期性。

2、離散時間傅立葉變換dtft的週期:

將以離散時間訊號x(n)變換到連續的頻域,值得注意的是這一頻譜是週期的,且週期為2π。

3樓:載福堂

離散時間傅立葉變換有時也稱為序列傅立葉變換。離散時間傅立葉變換實質上就是單位圓上的(雙邊)z變換。當時域訊號為連續訊號時,用連續時間傅立葉變換;為離散訊號時,用離散時間傅立葉變換。

離散時間傅立葉變換(dtft,discrete time fourier transform)使我們能夠在頻域(數字頻域)分析離散時間訊號的頻譜和離散系統的頻響特性。但還存在兩個實際問題。

1. 數字頻率 是一個模擬量,為了便於今後用數字的方法進行分析和處理,僅僅在時域將時間變數t離散化還不夠,還必須在頻域將數字頻率離散化。

2. 實際的序列大多為無限長的,為了分析和處理的方便,必須把無限長序列截斷或分段,化作有限長序列來處理。

dtft是對任意序列的傅立葉分析,它的頻譜是一個連續函式;而dft是把有限長序列作為週期序列的一個週期,對有限長序列的傅立葉分析,dft的特點是無論在時域還是頻域都是有限長序列。

dft提供了使用計算機來分析訊號和系統的一種方法,尤其是dft的快速演算法fft,在許多科學技術領域中得到了廣泛的應用,並推動了數字訊號處理技術的迅速發展。

傅立葉變換有什麼用?

4樓:匿名使用者

傅立葉變換是數字訊號處理

領域一種很重要的演算法。要知道傅立葉變換演算法的意義,首先要了解傅立葉原理的意義。

傅立葉原理表明:任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅立葉變換演算法利用直接測量到的原始訊號,以累加方式來計算該訊號中不同正弦波訊號的頻率、振幅和相位。

和傅立葉變換演算法對應的是反傅立葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波訊號轉換成一個訊號。

因此,可以說,傅立葉變換將原來難以處理的時域訊號轉換成了易於分析的頻域訊號(訊號的頻譜),可以利用一些工具對這些頻域訊號進行處理、加工。最後還可以利用傅立葉反變換將這些頻域訊號轉換成時域訊號。

從現代數學的眼光來看,傅立葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函式表示成正弦基函式的線性組合或者積分。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。

在數學領域,儘管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特徵。"任意"的函式通過一定的分解,都能夠表示為正弦函式的線性組合的形式,而正弦函式在物理上是被充分研究而相對簡單的函式類:

1、傅立葉變換是線性運算元,若賦予適當的範數,它還是酉運算元;

2、傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;

4、離散形式的傅立葉的物理系統內,頻率是個不變的性質,從而系統對於複雜激勵的響應可以通過組合其對不同頻率正弦訊號的響應來獲取;

5、著名的卷積定理指出:傅立葉變換可以化復變換可以利用數字計算機快速的算出(其演算法稱為快速傅立葉變換演算法(fft))。

正是由於上述的良好性質,傅立葉變換在物理學、數論、組合數學、訊號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。

擴充套件資料

傅立葉生於法國中部歐塞爾(auxerre)一個裁縫家庭,9歲時淪為孤兒,被當地一主教收養。2023年起就讀於地方軍校,2023年任巴黎綜合工科大學助教,2023年隨拿破崙軍隊遠征埃及,受到拿破崙器重,回國後於2023年被任命為伊澤爾省格倫諾布林地方長官。

傅立葉早在2023年就寫成關於熱傳導的基本**《熱的傳播》,向巴黎科學院呈交,但經拉格朗日、拉普拉斯和勒讓德審閱後被科學院拒絕,2023年又提交了經修改的**,該文獲科學院大獎,卻未正式發表。

傅立葉在**中推匯出著名的熱傳導方程 ,並在求解該方程時發現解函式可以由三角函式構成的級數形式表示,從而提出任一函式都可以展成三角函式的無窮級數。傅立葉級數(即三角級數)、傅立葉分析等理論均由此創始。

傅立葉由於對傳熱理論的貢獻於2023年當選為巴黎科學院院士。

2023年,傅立葉終於出版了專著《熱的解析理論》(theorieanalytique de la chaleur ,didot ,paris,1822)。這部經典著作將尤拉、伯努利等人在一些特殊情形下應用的三角級數方法發展成內容豐富的一般理論,三角級數後來就以傅立葉的名字命名。

傅立葉應用三角級數求解熱傳導方程,為了處理無窮區域的熱傳導問題又匯出了當前所稱的「傅立葉積分」,這一切都極大地推動了偏微分方程邊值問題的研究。

然而傅立葉的工作意義遠不止此,它迫使人們對函式概念作修正、推廣,特別是引起了對不連續函式的**;三角級數收斂性問題更刺激了集合論的誕生。因此,《熱的解析理論》影響了整個19世紀分析嚴格化的程序。傅立葉2023年成為科學院終身祕書。

由於傅立葉極度痴迷熱學,他認為熱能包治百病,於是在一個夏天,他關上了家中的門窗,穿上厚厚的衣服,坐在火爐邊,結果因co中毒不幸身亡,2023年5月16日卒於法國巴黎。

5樓:匿名使用者

傅立葉的核心思想就是所有的波都可以用多個正弦波疊加表示。

這裡面的波包括從聲音到光等所有波。

所以,對一個採集到的聲音做傅立葉變化就能分出好幾個頻率的訊號。比如南非世界盃時,南非人吹的嗚嗚主拉的聲音太吵了,那麼對現場的音訊做傅立葉變化(當然是對聲音的資料做),會得到一個式,然後找出嗚嗚主拉的特徵頻率,去掉式中的那個頻率的sin函式,再還原資料,就得到了沒有嗚嗚主拉的嗡嗡聲的現場聲音。

而對**的資料做傅立葉,然後增大高頻訊號的係數就可以提高影象的對比度。同樣,相機自動對焦就是通過找影象的高頻分量最大的時候,就是對好了。

6樓:未來還在那裡嗎

「傅立葉變換,表示能將滿足一定條件的某個函式表示成三角函式(正弦和/或餘弦函式)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。最初傅立葉分析是作為熱過程的解析分析的工具被提出的。」

7樓:匿名使用者

為什麼計算機要處理

訊號的頻域呢?因為訊號的時域是整個時間軸上的,計算機是不可能處理這麼大的資料量的,而一般訊號都是窄帶訊號,也就是頻率只有一個很小的區間,因此處理的資訊量就會小的多所以計算機就是處理他的頻域,關於怎麼處理呢?計算機首先要對訊號抽樣,得一些離散值在量化就得到數字訊號,計算機通過裡面fft(就是頻域和時域的對應關係)等程式就可以對它的頻域操作了,就是用濾波器來完成的

對影象的處理應該就如你所說,讓影象訊號經過一個低通濾波器就可以了,濾波器的傳輸函式是要通過計算的 謝謝!

8樓:匿名使用者

可憐的娃,我就是被這個搞死的,呵呵。我只曉得fft是將訊號中各種成分以頻率軸拉開的結果,就好比x座標。。。。。

matlab,對離散陣列,進行傅立葉變化!!!!

9樓:

參考一下這個例子

例:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。取樣頻率fs=100hz,繪製n=128點幅頻圖。

clf;

fs=100;n=128; %取樣頻率和資料點數

n=0:n-1;t=n/fs; %時間序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %訊號

y=fft(x,n); %對訊號進行快速fourier變換

mag=abs(y); %求得fourier變換後的振幅

f=n*fs/n; %頻率序列

subplot(2,2,1),plot(f,mag); %繪出隨頻率變化的振幅

xlabel('頻率/hz');

ylabel('振幅');title('n=128');grid on;

subplot(2,2,2),plot(f(1:n/2),mag(1:n/2)); %繪出nyquist頻率之前隨頻率變化的振幅

xlabel('頻率/hz');

ylabel('振幅');title('n=128');grid on;

傅立葉變換是用來做什麼的,具體舉例一下應用?

10樓:喵喵喵

本質上講,傅立葉變換,是把一個複雜事物,拆解成一堆標準化的簡單事物的方法。拿聲音舉例,我們知道聲音是物體振動發出的,它是一種波,通過空氣或其他介質進行傳播。

如果用聲波記錄儀記錄並顯示這些波的振動形式,會發現生活中的絕大部分的聲音是都是非常複雜甚至雜亂無章的。

擴充套件資料

根據原訊號的不同型別,我們可以把傅立葉變換分為四種類別:

1、非週期性連續訊號傅立葉變換(fourier transform)

2、週期性連續訊號傅立葉級數(fourier series)

3、非週期性離散訊號離散時域傅立葉變換(discrete time fourier transform)

4、週期性離散訊號離散傅立葉變換(discrete fourier transform)

傅立葉級數與傅立葉變換,傅立葉級數與傅立葉變換異同點

不需要分段積分,sinx的絕對值,週期減為pi 修改積分割槽間為0到pi,即可 傅立葉級數與傅立葉變換異同點 一 相同點 傅立葉級數和傅立葉變換都源自於傅立葉原理得出 傅立葉變換是從傅立葉級數推演而來的,傅立葉級數是所有周期函式都可以分解成一系列的正交三角函式,這樣,周期函式對應的傅立葉級數即是它的...

什麼叫傅立葉係數傅立葉級數,傅立葉積分與傅立葉變換三者之間的關係

傅立葉係數由fourier coefficient翻譯而來,有多箇中文譯名,如傅立葉係數。它是數學分析中的一個概念,常常被應用在訊號處理領域中。對於任意的週期訊號,如果滿足一定條件,都可以三角函式的線性組合,每個項的係數稱為傅立葉係數。一般地說,若f是以2 為週期且在 上可積的函式,則可按公式計算出...

高數成傅立葉級數,高數成傅立葉級數。

一個是簡寫,一個是具體囊括寫出 就比如說 2x 3 的平方,這個是簡寫 讓你寫出它的式 但傅立葉級數一般都是無窮的,都用n表示 高數fx為傅立葉級數 使用傅立葉級數的公式 1 先求a0 a0 1 e68a84e8a2ad62616964757a686964616f31333363373661 f x...