1樓:匿名使用者
因為a的全部特徵值為 1,2,-1.
所以 a^3-5a^2 的特徵值為 -4,-12,-6
所以 |a^3-5a^2|=(-4)(-12)(-6) = -288.
已知3階矩陣a的特徵值為-1,2,2,設b=a2+3a-e,求矩陣a的行列式,矩陣b的特徵值
2樓:drar_迪麗熱巴
b的特徵值
是:-3,9,9
解題過程如下:
由特徵值與行列式的關係知:|a|=λ1*λ2*λ3=(-1)*2*-4.
其中公式中λi是矩陣a的特徵值。
(2)設f(x)=x^2+3x-1
則b=f(a)
由特徵值的性質知:若λ是矩陣a的特徵值,則f(λ)就是多項式矩陣f(a)的特徵值,
所以b=f(a)的特徵值是:f(-1), f(2), f(2)
即b的特徵值是:f(-1)=(-1)^2+3*(-1)-1=-3
f(2)=2^2+3*2-1=9
f(2)=9
即b的特徵值是:-3,9,9
設a為n階矩陣,若存在常數λ及n維非零向量x,使得ax=λx,則稱λ是矩陣a的特徵值,x是a屬於特徵值λ的特徵向量。
a的所有特徵值的全體,叫做a的譜。
求矩陣的全部特徵值和特徵向量的方法如下:
第一步:計算的特徵多項式;
第二步:求出特徵方程的全部根,即為的全部特徵值;
第三步:對於的每一個特徵值,求出齊次線性方程組。
[注]:若是的屬於的特徵向量,則也是對應於的特徵向量,因而特徵向量不能由特徵值惟一確定.反之,不同特徵值對應的特徵向量不會相等。
3樓:匿名使用者
由特徵值與行列式的關係知:|a|=λ1*λ2*λ3=(-1)*2*-4.
其中公式中λi是矩陣a的特徵值。
(2)設f(x)=x^2+3x-1
則b=f(a)
由特徵值的性質知:若λ是矩陣a的特徵值,則f(λ)就是多項式矩陣f(a)的特徵值,
所以b=f(a)的特徵值是:f(-1), f(2), f(2)即b的特徵值是:f(-1)=(-1)^2+3*(-1)-1=-3f(2)=2^2+3*2-1=9
f(2)=9
即b的特徵值是:-3,9,9
已知三階方陣a的三個特徵值為1,-1,2。設矩陣b=a^3-5a^2。則|b|=?
4樓:demon陌
|||b|=-288。
|b|=|a²(a-5i)|=|a|²|a-5i|=4|a-5i|,其中最後一步利用了矩陣的行列式等於其特徵值的乘積這個性質。剩下的問題就是求|a-5i|。由於a的特徵值互異,因此可以對角化,設a=p^(-1)dp,其中d=diag(1,-1,2),則
|a-5i|=|p^(-1)dp-5p^(-1)p|=|p^(-1)(d-5i)p|=|p^(-1)||diag(-4,-6,-3)||p|=-72,因此|b|=-288。
設a=(aij)是數域p上的一個n階矩陣,則所有a=(aij)中的元素組成的行列式稱為矩陣a的行列式,記為|a|或det(a)。若a,b是數域p上的兩個n階矩陣,k是p中的任一個數,則|ab|=|a||b|,|ka|=kn|a|,|a*|=|a|n-1,其中a*是a的伴隨矩陣;若a是可逆矩陣,則|a^(-1)|=|a|^(-1)。
5樓:王磊
^相當基礎的題目!矩陣a的特徵值為λ1=1,λ2=-1,λ3=2,則矩陣b對應的三個特徵值為β1=1^3-5*1^2,β2=(-1)^3-5*(-1)^2和β3=2^3-5*2^2,即-4,-6,-12。所以由特徵值的性質有,矩陣b的行列式值|b|=(-4)*(-6)*(-12)=-288
設3階方陣a的特徵值為1,-1,2,則a^3-2a^2的行列式為多少?
6樓:匿名使用者
如圖用特徵值的性質化簡計算。請採納,謝謝!祝學習進步!
已知三階矩陣a的特徵值為1,2,3,計算行列式a^3-5a^2+7e
7樓:匿名使用者
有定理為證:若 a 的特徵值是 λ,則矩陣多項式 f(a) 的特徵值是 f(λ)。這樣
a^3-5a^2+7e
的特徵值就是
λ^3-5λ^2+7,
可以算出來了嗎?
8樓:匿名使用者
計算矩陣(不是行列式!),a^3-5a^2+7e的特徵值:
λ1=1-5+7=3,
λ2=8-20+7=-5
λ3=27-45+7=-11
9樓:27647平
多項式的特徵值=a的特徵值的多項式。(可用特徵值定義證明)
設三階方陣a的特徵值為1,-1,2,b=a^3-5a^2求行列|b|和|a-5e|
10樓:匿名使用者
根據該命題,b的特徵值為:-4,-6,-12;a - 5e的特徵值為:-4,-6,-3
由於矩陣的行列式 = 矩陣所有特徵值之積,於是:
|b| = -432;|a - 5e| = -72。
已知三階矩陣a的特徵值為1,-1,2,設矩陣b=a3-5a2,則行列式|b|=______
11樓:我是一個麻瓜啊
|||b|=-288。
求矩陣的行列式通常通過因式分解並利用|ab|=|a||b|轉換為簡單矩陣的行列式的乘積。
|b|=|a²(a-5i)|=|a|²|a-5i|=4|a-5i|,其中最後一步利用了矩陣的行列式等於其特徵值的乘積這個性質。剩下的問題就是求|a-5i|。由於a的特徵值互異,因此可以對角化,設a=p^(-1)dp,其中d=diag(1,-1,2),則:
|a-5i|=|p^(-1)dp-5p^(-1)p|=|p^(-1)(d-5i)p|=|p^(-1)||diag(-4,-6,-3)||p|=-72。
因此|b|=-288。
12樓:手機使用者
利用矩陣特徵值的性質以及已知條件可得,b的所有特徵值為:
13-5×12=-4,
(-1)3-5×(-1)2=-6,
23-5×22=-12.
從而,|b|=(-4)×(-6)×(-12)=-288.
3階方陣a的特徵值為1,-1,2,則|a^2-2e|=
13樓:匿名使用者
由特徵值的定義有
aα=λα,α≠0 (λ為特徵值,α為特徵向量)則有a^2α=a(λα)=λaα=λ^2α即有(a^2-2e)α=(λ^2-2)α
也就是說如λ是a的特徵值,那麼λ^2-2就是a^2-2e的特徵值所以特徵值為-1,-1,2
則所求矩陣的行列式的值為其特徵值的乘積,結果為 2
14樓:匿名使用者
^det(a-2e)=0
ax=2x
a^2 x=a(2x)=2ax=2 2x=4x(a^2 -2e)x=2x
存在y,x y^t=e
(a^2 -2e)x y^t=2x y^tdet(a^2 -2e)det(x y^t)=det(2x)=2det(x y^t)
det(a^2 -2e)det(e)=2det(e)det(a^2 -2e)=2#
15樓:同意以上條款
因為特徵值是2,則|a-2e|=0,所以a^2-2e+e^2-e^2=(a-e)^2-e^2=(a-e+e)(a-e-e)=a(a-2e)=0
您好,劉老師: 第一題 設三階方陣a的特徵值為1,-1,2,求矩陣b=2a^3-5a^2+3e的特徵值和行列式與|b|
16樓:應該不會重名了
1,b的特徵值就是a特徵值帶入已知多項式
λ(b)=2*1^3-5*1^2+3=0,-4,,-1
|b|=-1*0*(-4)=0
已知三階矩陣A的特徵值為 1,1,2,則2A3 3A
因為a的特徵值為 1,1,2,所以f a 2a3 3a2的特徵值為 f 1 5,f 1 1,f 2 4,從而 2a3 3a2 5 1 4 20 故答案為 20 a的特徵值為 1,1,2 且a又是3階 說明a相似於diag 1,1,2 即存在c可逆,c 1 ac diag 1,1,2 兩邊取行列式 c...
二階矩陣特徵值公式二階矩陣特徵值公式
設a是n階方陣,如果存在數m和非零n維列向量x,使得ax mx成立,則稱m是a的一個特徵 值。係數行列式 a e 稱為a的特徵多項式,記 e a 是一個p上的關於 的n次多項式,e是單位矩陣。e a a1 an 0是一個n次代數方程,稱為a的特徵方程。特徵方程 e a 0的根 如 0 稱為a的特徵根...
已知三階方陣a的特徵值為已知三階方陣A的三個特徵值為1,1,2。設矩陣BA35A2。則B?
b 288。b a a 5i a a 5i 4 a 5i 其中最後一步利用了矩陣的行列式等於其特徵值的乘積這個性質。剩下的問題就是求 a 5i 由於a的特徵值互異,因此可以對角化,設a p 1 dp,其中d diag 1,1,2 則 a 5i p 1 dp 5p 1 p p 1 d 5i p p 1...