求由拋物線y x2,直線x 2和x軸所圍成的平面圖形,繞x軸

2021-05-19 15:23:35 字數 3043 閱讀 1351

1樓:匿名使用者

y=x的平方,一個底面是以x=2為半徑的圓,可以理解為一個高為4的圓柱體減掉拋物面的幾何體積,這個就很複雜了,我只知道任何由直線和直角圓錐體的截面所包圍的弓形(即拋物線),其面積都是其同底同高的三角形面積的三分之四。體積就不會了.

求由拋物線y=2-x^2與直線y=x,x=0圍成的平面圖形分別繞x軸y軸旋轉一週生成的旋轉體體積

2樓:景望亭巫辰

求由曲線y=x²,y=x+2圍城的圖形繞y軸旋轉一週生成的旋轉體的體積v直線y=x+2與y軸的交點的座標為c(0,2);令x²=x+2,得x²-x-2=(x+1)(x-2)=0,故得x₁=-1,x₂=2;即直線y=x+1與拋物線y=x²的交點為a(-1,1),b(2,4);直線段cb繞y軸旋轉一週所得旋轉體是一個園錐,該園錐的底面半徑=2,園錐高=2;其體積=(8/3)π;故所求旋轉體的體積v=【0,4】∫πx²dy-(8/3)π=【0,2】π∫ydy-(8/3)π=(π/2)y²【0,4】-(8/3)π=8π-(8/3)π=(16/3)π

3樓:涼念若櫻花妖嬈

求由拋物線y²=x和直線x-y=0所圍成的平面圖形分別繞x軸和y軸旋轉一週而得的轉體的體積

解:拋物線y²=x與直線y=x相交於(1,1).

繞x軸旋轉一週所得旋轉體的體積v₁=[0,1]π∫[(√x)²-x²]dx=[0,1]π∫[(x-x²)dx=π[x²/2-x³/3]︱[0,1]

=π(1/2-1/3)=π/6

繞y軸旋轉一週所得旋轉體的體積v₂=[0,1]π∫[y²-y⁴)dy=π[y³/3-(1/5)(y^5)]︱[0,1]=π[1/3-1/5]

=2π/15。

求曲線y=x²、直線y=2-x及x軸所圍成的平面圖形繞的x軸旋轉一週所形成旋轉體的體積

4樓:洪範周

如圖所示:所圍成的平面圖形繞的x軸旋轉一週所形成旋轉體的體積=43.63

求曲線y=x^2和y=2—x^2所圍成的平面圖形繞x軸旋轉而得的旋轉體的體積

5樓:匿名使用者

曲線交點(0,0)、(1,1)

v=∫(0--1)π(x-x^4)dx=π(1/2x²-1/5x^5)|0--1

=π(1/2-1/5)=3π/10

6樓:始霞賞婉

這個體積公式,y=f(x),x=a,x=b,x軸圍成的曲邊梯形繞x軸旋轉一週形成的實心立體的體積公式

v=π∫(0,1)f^2(x)dx

你現在求的是兩個題體積的差,帶入公式就得到上面的解題過程。

求由拋物線y^2=x和直線x-y=0所圍成的平面圖形分別繞x軸和y軸旋轉一週而得的轉體的體積

7樓:匿名使用者

解:拋物線y²=x與直線y=x相交於(1,1).

繞x軸旋轉一週所得旋轉體的體積v₁=[0,1]π∫[(√x)²-x²]dx=[0,1]π∫[(x-x²)dx=π[x²/2-x³/3]︱[0,1]

=π(1/2-1/3)=π/6

繞y軸旋轉一週所得旋轉體的體積v₂=[0,1]π∫[y²-y⁴)dy=π[y³/3-(1/5)(y^5)]︱[0,1]=π[1/3-1/5]

=2π/15。

曲線y=x²與直線x=1及x軸所圍成的平面圖形繞y軸旋轉一週得到的旋轉體體積是多少?

8樓:drar_迪麗熱巴

答案為π/2。

解題過程如下:

先求y=1,y軸與y=x²所圍成的圖形旋轉一週得到的旋轉體體積,再利用整體圓柱的體積π減去上述體積即為所求,其中y=x²要化為x等於√y。公式如下:

v=π-∫(0,1)π(√y)²dy

=π-π/2[y²](0,1)

=π-π/2

=π/2

二次函式表示式為y=ax2+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。

如果令y值等於零,則可得一個二次方程。該方程的解稱為方程的根或函式的零點。

函式性質

二次項係數a決定拋物線的開口方向和大小。當a>0時,拋物線開口向上;當a<0時,拋物線開口向下。|a|越大,則拋物線的開口越小;|a|越小,則拋物線的開口越大。

一次項係數b和二次項係數a共同決定對稱軸的位置。當a與b同號時(即ab>0),對稱軸在y軸左側;當a與b異號時(即ab<0),對稱軸在y軸右側。(可巧記為:左同右異)

常數項c決定拋物線與y軸交點。拋物線與y軸交於(0, c)

9樓:匿名使用者

先求y=1,y軸與y=x²所圍成的圖形旋轉一週得到的旋轉體體積,再利用整體圓柱的體積π減去上述體積即為所求,其中y=x²要化為x等於√y。公式如下:

v=π-∫(0,1)π(√y)²dy

=π-π/2[y²](0,1)

=π-π/2

=π/2

10樓:慕要辰星

用公式是2π∫(0,1)ydx,然後把y換成x2,或者用微元法

,按x到x+dx作為一個小微元,高近似為y,將這部分繞y軸旋轉的體積看做是一個空心的圓柱,厚度為dx,將它沿著高切開,之後為一個長寬高分別為2πx(也就是圓的周長)、y、dx的長方體,然後進行積分,也就是衍生出來的公式。

11樓:貓果

先把函式改寫成x(y)的形式,通過x和y的對應關係寫出積分割槽間,對x(y)在所求區間進行積分就可以了

vy=π∫(0,1)1²dy-π∫(0,1)(√y)²dy

12樓:

繞x軸旋轉得到的體積

vx=π∫(0到2)(x²)²dx=32π/5繞y軸旋轉得到的體積

vy=π∫(0到4)2²dy-π∫(0到4)(√y)²dy=8π

求由拋物線y=x2,y=根號下x,所圍成的平面圖形的面積和繞x軸旋轉一週所得到的旋轉體的體積。謝謝了

13樓:洪範周

如圖:所圍成的平面圖形的面積=0.33;繞x軸旋轉一週所得到的旋轉體的體積=0.93

用定積分求由拋物線y x 2和直線y x 2所圍成的圖形面積

y x 2 y x 2 先求交點 x 2 x 2 0 1,2,x 2 x 2dx 1 3 x 3 1 2 x 2x 1,2 7 2 圍成面積取絕對值 7 2 計算由曲線y 2 2x,y x 4所圍成的圖形的面積 先求交點,聯抄 立y 2x,y x 4解得襲a 2,2 b 8,4 再用y軸方向定積分 ...

求由曲線yx2和直線yx2,x0,x3圍成的圖形

解方程組 y x 2 y x 2 在x 0到x 3之間的解為x 2 y x 2與y x 2,x 0,x 3所圍成的面積ss x 2dx x 2 dx 第一個積分限是 版0 2,第二個是權2 3 結果 43 6 答題不易 滿意請果斷採納好評 你的認可是我最大的動力 祝你學習愉快 求由曲線y x 2與y...

如圖,拋物線y x2 bx c交x軸於點A B,交y軸於點

1 將點b 1,0 點c 0,3 代入y x2 bx c得 1 b c 0 c 3,解得 b 2 c 3,則拋物線的解析式為 y x2 2x 3 2 由題意得 y kx?1 y x 2x 3 2,m2 2 本回答由提問者推薦 已贊過 已踩過 你對這個回答的評價是?收起2011 01 28 如圖,拋物...