兩個可導函式四則運算一定還可導嗎?,兩個不可導函式呢?可導不可導呢

2021-05-24 01:00:12 字數 6329 閱讀 8931

1樓:匿名使用者

前面是對的,可導和可導組合還是可導

不可導和不可導組合就不確定了

可導和不可導組合也不確定

2樓:高攀灬

設f(x),g(x)都可導

求導法則

[f(x)+g(x)]'=f'(x)+g'(x)[f(x)-g(x)]'=f'(x)-g'(x)[f(x)*g(x)]'=f'(x)g(x)+g'(x)f(x)[f(x)/g(x)]'=[f'(x)g(x)+g'(x)f(x)]/(g(x)*g(x))

g(x)≠0

所以兩個可導函式進行四則運算後是否仍然可導反之後面兩個不一定

高等數學中的函式如何學習

3樓:匿名使用者

要學好高等數

學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。

( 1 )高度的抽象性

數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。

它的抽象程度大大超過了自然科學中一般的抽象。

( 2 )嚴謹的邏輯性

數學中的每一個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明一個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。

( 3 )廣泛的應用性

高等數學具有廣泛的應用性。例如,掌握了導數概念及其運演算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運演算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。

高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。瞭解了這些就能學好高等數學的函式了。

4樓:匿名使用者

函式考察的題目有以下幾點:

1、定義域

2、值域

3、最值(最大最小)

4、圖象對稱

5、交點

6、平移

而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。

5樓:沙漠射手

我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律

高等數學是不是主要學習函式

6樓:匿名使用者

函式與極限,

導數與微分,

微分中值定理,

不定積分和定積分,

微分方程.

這些在高中都有涉獵,學起來還是都是比較容易的.

空間解析幾何,

多元函式微分,

重積分,

曲線積分和曲面積分,

無窮級數,這

些需要用心學習苦下功夫了.

還有線性代數,

概率論,

向量分析等等.

如果你是學工科的話,這些數學全是基礎,一定要紮實學習,加油.

高等數學都學什麼?

7樓:demon陌

高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

8樓:愛要一心

這是目錄:

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。

9樓:匿名使用者

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

它的資料和講義,網上有很多。

10樓:匿名使用者

主要就是定積分還有微積分方面的知識

11樓:天涯客

函式,極限,連續

一元函式微分

一元函式積分

多元函式微分

多元函式積分

常微分方程

高數主要學習些什麼?

12樓:匿名使用者

高等數學主要內容包括:極限、微積分、

空間解析幾何與向量代數、級數、常微分方程。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

《高等數學》是根據國家教育部非數學專業數學基礎課教學指導分委員會制定的工科類本科數學基礎課程教學基本要求編寫的·內容包括: 函式與極限,一元函式微積分,向量代數與空間解析幾何,多元函式微積分,級數,常微分方程等,書末附有幾種常用平面曲線及其方程、積分表、場論初步等三個附錄以及習題參***·本書對基本概念的敘述清晰準確,對基本理論的論述簡明易懂,例題習題的選配典型多樣,強調基本運算能力的培養及理論的實際應用·本書可用作高等學校工科類本科生和電大、職大的高等數學課程的教材,也可供教師作為教學參考書及自學高等數學課程者使用。

13樓:漾芥

積分很重要,你如果還沒有接觸過高數,自學下那塊內容,以後學起來會輕鬆不少的……

積分是基礎,都是靠做題找感覺,練出來的,一定時候就能找到做題的靈感

高數對嚴格的定理證明的要求不高,重在公式和方法的應用

14樓:匿名使用者

高等數學主要包括函式與極限、導數與微分、不定積分、定積分及其應用、無窮級數、空間解析幾何、多元函式的微分學、常微分方程等章節,

我自己認為不定積分、定積分及其應用、多元函式的微分學比較重要

如何自學高等數學

15樓:藍疏

我也是想考研的,不想複製別人的,簡單給你說說我的方法吧。

我用的也是同濟5版的高數,不過我是數2,比你少個概率。

按照下面的方法應該可以在6月前把高數紮實的過一遍的。

1.有人推薦陳文燈的書,我用的就是陳文燈的,所以我建議你還是別用他的書了,比較深奧,技巧極強,而考研不是考技巧什麼的,要在規定的時間內拿到必要的分數。你去買李永樂的複習叢書吧,那套書注重基礎概念,很適合你現在。

2.在用資料前,把你的高數認真過一遍,後面的習題大部分不用做。但是我覺得書上的例題的解題思想都是精華,你要把樹上的立體全部自己做一遍,我就是這樣做的,感覺做完之後就是一個感覺:

博大精深。。。我覺得到時候考研應該就是按照這個爐子來的,畢竟很多解題思想的確很棒。我看了一套真題,很多結論大家都知道,而且知道怎麼用,可是讓證明了,大家都不會,為什麼呢,基礎不紮實。

我現在看到不定積分了,在換元法積分那塊卡了2天了,我覺得這塊比較重要,就把樹後面的習題都做了一遍,第二大題,一共40小題,我從21題開始做,錯了6個,不會3個。後來找參考書看了下,6個圈是粗心造成的,3個不會的,那個思路的確很好,特別是40題。反正讓我苦想一輩子不一定能想出來,畢竟大一學的,現在基本還給老師了。。。

3.時間問題,上面1.2把學習的參考資料和方法都數了,但是時間沒說。

我覺得數學是考研裡最拉分的學科了,決定了你上什麼檔次學校的問題,所以要給足時間,我每天在自習室裡學2個小時,如果下午沒課就看看。循序漸進的看了大約半個月了,感覺基礎複習的聽好的。

4.參考書不在多,而是精。新航道的胡敏說過,提放只看一本書的人。

我相信你正確用了李永樂的複習叢書,包括線代講義肯定有收穫的。

參考書使用方法,書上的很多都是真題或者特別精華的題目,看到之後自己先畫畫,看看會不會,眼高手低的人很多,我是一個。後來我做題時候都親自做一遍,畢竟會做和做出來是兩個概念。並多總結經驗教訓。

5.錯題,只錯一次。

6.持之以恆.共勉。

16樓:tao濤

主要有以下幾點:

1,逐步樹立信心。高數(工專)對以前的基礎要求很少,三角公式在教材裡就可查到。所以,像我一樣,從「0」開始,一樣可以過高數。

2,邁出重要的、關鍵的、決定性的第一步。多花些時間,著重先學透前三章,選做一些練習;第三章的「導數」,是後繼內容「微分」、「積分」、「二重積分」的基礎,也可以舉一反三。學完了「導數」,自己能計算題目了,就會信心倍增。

3,緊扣大綱,但又要區分主次;可先適當跳過應用難題和難點。學習每一章之前,都要先看大綱。

4,把「例題」,當成「習題」,自己先做一遍,可以事半功倍。因為當你看到例題時,已經看過了相關的教材內容。有的人看書確實很認真,但不重視通過做習題來逆向檢驗和加深記憶,考試效果比較差。

5,通過以往試卷真題的練習,是複習和檢驗的重要環節。

高等數學(一)是經濟類各專科專業必修的公共課。高等數學(工專)、(工本)分別是工科類專科、本科專業必修的公共課。儘管要求不同,但是其內容 都包括:

函式、極限與連續、導數與微分、中值定理與導數應用、積分、無窮級數、多元函式微積分、微分方程等內容。另外由於工科類專業對數學要求高,所以又增加了些內容,並適當提高了難度。 高等數學所學的內容為一元函式微積分學及多元函式微積分學。

這就要求自學者高中階段數學課程中「函式」、「三角函式 」、「反三角函式」這一部分知識學習的要牢固,如果這些預備知識學得不紮實,就勢必會影響到求導、積分的計算。除了這些必備的知識外,考生同時也應熟練掌 握一些中學階段學過的公式和方法:如:

因式分解公式、分式的通分與化簡、一元二次方程的解法、三角函式公式、倍角公式等。考生在學習本課程前,如這些預備 知識不夠的話,建議考生先補習這部分內容,然後再繼續高等數學的學習。作為高等數學最重要的公式是導數公式和基本積分公式,這兩類公式必須熟記,並能靈活運用。

建議自學者在學習此課程的積分部分時,要多多做題,因為很多積分式是不好「積」出來的,必須進行變換,要充分利用各種計算方法和技巧才能繼續做下去。

因為高數一各章是相互關聯層層推進的,每一章都是後一章的基礎,所以學習時一定要按部就班,只有將這一章 真正搞懂了才可進入下一章學習,切忌為求快而去速學,欲速則不達嘛,特別是當前面沒學好硬去學後面的,會將不懂的問題越集越多,此時自學者的心態就會越來 越煩躁,並且不知從何處下手去改善,所見的題目、知識全都不懂,這時很大部分朋友可能就會放棄做逃兵。所以一定要一章一章去學。在學每一章時,建議先將課本內容看一遍,如果一遍還不明的話,再看一遍。

然後看書上的例題,同時試著去做書後的習題。有條件的話,可以買一些參考書來看 和做題。做了部分題後,就拿一套以往考試題看看考題中本章有沒有題,可以看看關於本章出題的方式。

一定要多做題,高數一講究「熟能生巧「。

高 數二的學習與高數一相比有很大的差異。首先說一說它們之間的異同,第一點,高數二不需要太多的基礎知識,只是概率裡有一點積分和導數的簡單計算;第二點, 高數一整個內容由微分扣積分這條線貫穿始終,而高數二內容連貫性不是很強;第三點,高數一學習要從根本上加強對基本概念和理論的理解,拓寬解題思路,加強 例題典型題的分析和綜合練習,並能對典型題舉一反三,所以需要做大量題,而高數二要加強基本概念的理解,並能掌握書本上的基本例題即可,不需舉一反三,考試題目特別是概率的大題大多千篇一律,無非就是將書上例題數字改一改而已,所以不需做大量題,只需將書上題目「真正」會做即可。

高數二的學習,首先學習過程中,一定要將每一章內容、概念、定理等真正理解,這可以通過多看幾遍書來達到。看書時一定要靜下心來,因為高數二內容較難理解,當看不下去時一定不要放棄,要硬著頭皮往下讀。這裡要注意一點的是,高數二中可能會有很多對定理、推論的證明過程,這些證 明過程又長又複雜,我建議大家對這些證明過程可以不用去看,你只需捉住精華---定理、推論,好好理解它們就可以了。

函式可微是否一定有導函式,判斷對錯可導函式不一定是可微函式

函式可微,導數或者偏導數一定存在,這個對一元函式和多元函式都適用。反過來,一元函式和多元函式就不一樣了。導數存在,一元函式可微,到多元函式偏導數都存在也不一定可微,可能不可微。一元函式可微和可導是同一個意思 判斷對錯 可導函式不一定是可微函式 對在一元函式中,可導必可微,可微必可導。但對於多元函式,...

什麼是可導函式 不可導函式?條件是什麼

1 可導函式 定義 bai在微積du 分學中,實變函式在定義域zhi的dao每一點上都是導數版。直觀地說,函式權 影象在其定義域中的每個點都相對平滑,並且不包含任何尖點或斷點。條件 如果f是在x0處可導的函式,則f一定在x0處連續,特別是,任何可微函式在其定義域的每一點上都必須是連續的。相反,這不一...

函式可導則函式必然連續,但是為什麼導函式存在則函式不一定連續

從你的疑問,感覺你似乎 混淆了 在一點連續或可導 與 在一點的鄰域區間連續或可導 如果函式在某點處可導,則一定在此點處連續。同樣,如果函式在某區間可導,則一定在此區間連續。但是,如果函式在某點處可導,則不一定在此點的鄰域連續。例如 當 x為有理數時,f x 0 當x為無理數時,f x x 2 可以根...