若fx為可導可積函式,則,可導,可微,可積分別是什麼意思

2021-05-16 09:03:14 字數 3512 閱讀 6554

1樓:匿名使用者

選ab的等式右端應該寫成f(x)dx

畢竟左邊是微分形式 右邊也應該是

c,d的問題都在於可以等於f(x)+c

常數不能忽略

可導,可微,可積分別是什麼意思?

2樓:demon陌

可導,即設y=f(x)是一個單變數函式, 如果y在x=x0處左右導數分別存在且相等,則稱y在x=x[0]處可導。如果一個函式在x0處可導,那麼它一定在x0處是連續函式。

可微,設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x= x0時,則記作dy∣x=x0。

擴充套件資料:

可導,即設y=f(x)是一個單變數函式, 如果y在x=x0處左右導數分別存在且相等,則稱y在x=x[0]處可導。如果一個函式在x0處可導,那麼它一定在x0處是連續函式。

可微,設函式y= f(x),若自變數在點x的改變數δx與函式相應的改變數δy有關係δy=a×δx+ο(δx),其中a與δx無關,則稱函式f(x)在點x可微,並稱aδx為函式f(x)在點x的微分,記作dy,即dy=a×δx,當x= x0時,則記作dy∣x=x0。

可微=>可導=>連續=>可積,在一元函式中,可導與可微等價。

函式在x0點連續的充要條件為f(x0)=lim(x→x0)f(x),即函式在此點函式值存在,並且等於此點的極限值

若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。可導的充要條件是此函式在此點必須連續,並且左導數等於右倒數。

可微在一元函式中與可導等價,在多元函式中,各變數在此點的偏導數存在為其必要條件,其充要條件還要加上在此函式所表示的廣義面中在此點領域內不含有「洞」存在,可含有有限個斷點。

函式可積只有充分條件為:

1函式在區間上連續

2在區間上不連續,但只存在有限個第一類間斷點(跳躍間斷點,可去間斷點)上述條件實際上為黎曼可積條件,可以放寬,所以只是充分條件。

可導和可微,是一樣的。

可導必連續,連續不一定可導。

連續必可積,可積不一定連續。

可積必有界,可界不一定可積。

函式可導的條件:

如果一個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件:

函式在該點的左右導數存在且相等,不能證明這點導數存在。只有左右導數存在且相等,並且在該點連續,才能證明該點可導。

可導的函式一定連續;連續的函式不一定可導,不連續的函式一定不可導。

必要條件

若函式在某點可微分,則函式在該點必連續;

若二元函式在某點可微分,則該函式在該點對x和y的偏導數必存在。

充分條件

若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。

3樓:繁人凡人

一元微積分裡可微和可導是兩個等價的概念,函式在某一點可微就是指在該點的導數存在.但是可積是指函式在某個區間上的定積分(和式極限)存在,而不是指其原函式是初等函式.連續函式都是有原函式的,但不一定是初等函式(可以是變上限積分函式),可積(和式極限存在)的函式的原函式可以不是初等函式,例如e^(-x^2)在r上是可積的,但是其原函式不是初等函式.

多元微積分中可導這個概念是不清楚的,因為多元函式求導要區分沿什麼方向,而多元函式可微是有明確定義的,而且函式可微和其偏導數有緊密聯絡,可積的情況和一元函式類似,指在某區域上的和式極限存在,同樣和被積函式的原函式是否有初等表示式無關.

若f(x)在[a,b]上可積 為什麼∫a→xf(t)dt在[a,b]上未必可導若f(x)在[a,b

4樓:匿名使用者

例如f(

x)=-1(x∈[-1,0]);1(x∈(0,1])很明顯,f(x)在區間[-1,,1]內只有1個跳躍間斷點x=0,所以根據定積分的性質,f(x)在[-1,,1]可積。

而也很容易就能算出來∫-1→xf(t)dt=|x|-1而|x|-1在x=0點是不可導的,雖然|x|-1在x=0點是連續的。

所以如果f(x)在[a,b]有跳躍間斷點,那麼∫a→xf(t)dt在這個跳躍間斷點處不可導。但是在這個跳躍間斷點處連續。其實就是∫a→xf(t)dt在跳躍間斷點處的左右導數都存在,但是不相等。

所以連續而不可導。

5樓:虞楊氏鄧辰

比如f(x)=

{2xx≠1

{0x=1

在[0,2]上

f(x)=∫(0→x)f(t)dt=x2

【這個你完全可以自己求積分驗證】

f(x)連續可導,且f'(x)=2x

所以,f'(x)≠f(x)

【反例的構思】

f(x)有可去間斷點即可。

函式f(x)在區間[a,b]上連續是f(x)可積的( )條件

6樓:不是苦瓜是什麼

連續是可積的充分非必要條件。

因為在區間上連續就一定有原函式,根據n-l公式得定積分存在。

反之,函式可。

對於一元函式有,可微<=>可導=>連續=>可積對於多元函式,不存在可導的概念,只有偏導數存在。函式在某處可微等價於在該處沿所有方向的方向導數存在,僅僅保證偏導數存在不一定可微,因此有:可微=>偏導數存在=>連續=>可積。

可導與連續的關係:可導必連續,連續不一定可導;

可微與連續的關係:可微與可導是一樣的;

可積與連續的關係:可積不一定連續,連續必定可積;

可導與可積的關係:可導一般可積,可積推不出一定可導。

7樓:匿名使用者

連續是可積的充分非必要條件,不要信樓上那幾個.

因為在區間上連續就一定有原函式,根據n-l公式得定積分存在.

反之,函式可積不能推出連續,只要函式在[a,b]上單調,或在[a,b]上有界且間斷點個數有限,就可以積分.

8樓:徐臨祥

推薦回答連續是可積的充分非必要條件,不要信樓上那幾個. 因為在區間上連續就一定有原函式,根據n-l公式得定積分存在. 反之,函式可積不能推出連續,只要函式在[a,b]上單調,或在[a,b]上有界且間斷點個數有限,就可以積分.

9樓:116貝貝愛

結果為:必要條件

解題過程如下:

性質:若函式y=f(x)在某個區間是增函式或減函式,則就說函式在這一區間具有(嚴格的)單調性,這一區間叫做函式的單調區間。此時也說函式是這一區間上的單調函式。

如果對於屬於i內某個區間上的任意兩個自變數的值x1、x2,當x1相反地,如果對於屬於i內某個區間上的任意兩個自變數的值x1、x2,當x1f(x2),那麼f(x)在這個區間上是減函式。

函式在某一區間內的函式值y,隨自變數x的值增大而增大(或減小)恆成立。若函式y=f(x)在某個區間是增函式或減函式,則就說函式在這一區間具有(嚴格的)單調性,這一區間叫做函式的單調區間。此時也說函式是這一區間上的單調函式。

函式可微跟可導有什麼關係,可微和可導有什麼區別

一元函式中可導與可微等價,它們與可積無關。多元函式可微必可導,而反之不成立。可微必可導,可導不一定可微,可導是可微的必要非充分條件。採納哦 例如y 5x 就是y的導數是5x 如果是微分 就是dy 5xdx 就是說y dy dx 可微和可導有什麼區別?一元函式中可導與可微等價,它們與可積無關。多元函式...

函式可微是否一定有導函式,判斷對錯可導函式不一定是可微函式

函式可微,導數或者偏導數一定存在,這個對一元函式和多元函式都適用。反過來,一元函式和多元函式就不一樣了。導數存在,一元函式可微,到多元函式偏導數都存在也不一定可微,可能不可微。一元函式可微和可導是同一個意思 判斷對錯 可導函式不一定是可微函式 對在一元函式中,可導必可微,可微必可導。但對於多元函式,...

已知函式f x 是 0上的可導函式,若xf x f x 在x0時恆成立

1 因為g x f x x xf x f x x 2 又抄xf x f x 在襲x 0時恆成立 所以 xf x f x 0 所以g x f x x xf x f x x 2 0在x 0時恆成立 函式g x f x x在 0,上是增函式.2 由1知函式g x f x x在 0,上是增函式,所以當x1 ...