考研線性代數矩陣A B可交換的充要條件為(AB)A B怎麼理解或者怎麼證明得到的

2021-04-17 19:12:25 字數 2251 閱讀 3899

1樓:匿名使用者

b為單位矩陣,又兩邊同左乘a的逆得到

2樓:匿名使用者

(ab)是什麼?a.b又是什麼?

3樓:笑年

(ab)=a.b 這兩個式子不是一樣的嗎

4樓:希望的風

^^證明版: ab=ba

<=> a^權-1(ab)a^-1 = a^-1(ba)a^-1<=> ba^-1 = a^-1b

<=> b^-1(ba^-1)b^-1 = b^-1(a^-1b)b^-1

<=> a^-1b^-1 = b^-1a^-1.

線性代數矩陣的一道證明題。 已知矩陣a,b是可交換的,證明:矩陣a+b與a-b是可交換的

5樓:匿名使用者

因為ab=ba,所以

(a+b)(a-b)=a²-ab+ba-b²=a²-b²(a-b)(a+b)=a²+ab-ba-b²=a²-b²即 (a+b)(a-b)=(a+b)(a-b),證畢。

線性代數 矩陣a~b什麼意思

6樓:demon陌

對n階方陣a、b,若存在可逆矩陣p,使得p^(-1)ap=b,則稱a、b相似。

從定義出發,最簡單的充要條件即是:對於給定的a、b,能夠找到這樣的一個p,使得:

p^(-1)ap=b;或者:能夠找到一個矩陣c,使得a和b均相似於c。

進一步地,如果a、b均可相似對角化,則他們相似的充要條件為:a、b具有相同的特徵值。

再進一步,如果a、b均為實對稱矩陣,則它們必可相似對角化,可以直接計算特徵值加以判斷(與2情況不同的是:2情況必須首先判斷a、b可否相似對角化)。

擴充套件資料:

n階矩陣a與對角矩陣相似的充分必要條件為矩陣a有n個線性無關的特徵向量。

注: 定理的證明過程實際上已經給出了把方陣對角化的方法。

若矩陣可對角化,則可按下列步驟來實現:

(1) 求出全部的特徵值;

(2)對每一個特徵值,設其重數為k,則對應齊次方程組的基礎解系由k個向量構成,即為對應的線性無關的特徵向量;

(3)上面求出的特徵向量恰好為矩陣的各個線性無關的特徵向量。

判斷兩個矩陣是否相似的輔助方法:

(1)判斷特徵值是否相等;

(2)判斷行列式是否相等;

(3)判斷跡是否相等;

(4)判斷秩是否相等。

以上條件可以作為判斷矩陣是否相似的必要條件,而非充分條件。

(兩個矩陣若相似於同一對角矩陣,這兩個矩陣相似。)

7樓:猶金生邱鳥

1、相似的定義為:對n階方陣a、b,若存在可逆矩陣p,使得p^(-1)ap=b,則稱a、b相似.

2、從定義出發,最簡單的充要條件即是:對於給定的a、b,能夠找到這樣的一個p,使得:

p^(-1)ap=b;或者:能夠找到一個矩陣c,使得a和b均相似於c.

3、進一步地,如果a、b均可相似對角化,則他們相似的充要條件為:a、b具有相同的特徵值.

4、再進一步,如果a、b均為實對稱矩陣,則它們必可相似對角化,可以直接計算特徵值加以判斷(與2情況不同的是:2情況必須首先判斷a、b可否相似對角化).

5、以上為線性代數涉及到的知識,而如果你也學過矩陣論,那麼a、b相似的等價條件還有:

設:a、b均為n階方陣,則以下命題等價:

(1)a~b;

(2)λe-a≌λe-b

(3)λe-a與λe-b有相同的各階行列式因子

(4)λe-a與λe-b有相同的各階不變因子

(5)λe-a與λe-b有相同的初等因子組

8樓:匿名使用者

~這個符號在矩

陣中表示的是兩個矩陣相似,也就是:

設a,b為n階矩陣,如果有n階非奇異矩陣p存在,使得p^(-1)*a*p=b成立,則稱矩陣a與b相似,記為a~b.

("p^(-1)"表示p的-1次冪,也就是p的逆矩陣, "*" 表示乘號, "~" 讀作"相似於".)

9樓:匿名使用者

消費花兒的解答是錯的 a可以通過初等變換成b是 矩陣a等價於矩陣b 樓主那個是相似

樓上那個回答是對的 相似矩陣的秩相等 還有判斷兩個矩陣是否相似有個充分條件 就是a和b都相似於同一個對角矩陣 線性代數要多看多背 很容易搞忘記的

10樓:小飛花兒的憂傷

a可以經過初等變換成b

線性代數可逆矩陣,線性代數,矩陣A,B各自可逆,那A B可逆嗎?A E呢?該怎麼判斷?

根據行列式值判斷是否可逆,再通過行變換求逆。線性代數,矩陣a,b各自可逆,那a b可逆嗎?a e呢?該怎麼判斷?a,b可逆 a b不一定可逆,比如取b a,則a b 0,不可逆。若取b a,則a b 2a,還是可逆的。a可逆,a e也不一定可逆,比如取a e,則a e 0,不可逆。判斷可逆可以通過行...

線性代數題,已知矩陣a b ab,證明ab

證明copy a 2 2ab e a a 2b e 說明a可逆,且a的逆為baia 2b 上式變形得到dub a 2 e 2a 代入ab ba a化簡得zhi到 ab ba a a a 2 e 2a a 2 e a 2a a 此時才dao能把ab ba約去 得到ab ba a a 得以證明。i為單位...

線性代數矩陣乘法問題,線性代數矩陣乘法的問題。

首先,這麼做的前提是c是可逆矩陣。這裡巧妙作用了矩陣運算的如下三個專性質 矩陣乘法滿足屬結合律 a bc ab c.對可逆矩陣c,都有cc 1 c 1 c e.對任意矩陣p,都有pe ep p.原題由a cbc 1 有 a 3 cbc 1 cbc 1 cbc 1 cb c 1 c b c 1 c b...