考察函式xysin1 x 2 y 2 在原點處的連續性與可微性

2021-04-18 15:44:30 字數 6008 閱讀 5542

1樓:匿名使用者

連續,根據無窮小乘以有界變數極限為0,

可微性討論有些麻煩,可以先求出在原點的兩個偏導,再用可微性定義討論

在學高等數學之前,要學習多少種函式

2樓:我愛文文

正比例函式,一次函式,反比例函式,二次函式,銳角三角函式,這是讀高中前所學的所有函式。

3樓:匿名使用者

加減乘除,乘方開方,對數,指數,冪,極限,導數,微分積分,好像高等數學也就只涉及到這幾種運算了

4樓:藍翼臣

高等數學其實不難

我現在就在自學

只要你有毅力堅持

完全不需要什麼函式

有不懂的再去看那函式的介紹

我現在初三,學著不很難,

你也學高數啊,呵呵,哥哥還是弟弟...?

5樓:36寸液晶

要學習高中課本上的一次函式、二次函式、三角函式、反三角函式、指數函式、對數函式。

高等數學中的函式如何學習

6樓:匿名使用者

要學好高等數

學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。

( 1 )高度的抽象性

數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。

它的抽象程度大大超過了自然科學中一般的抽象。

( 2 )嚴謹的邏輯性

數學中的每一個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明一個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。

( 3 )廣泛的應用性

高等數學具有廣泛的應用性。例如,掌握了導數概念及其運演算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運演算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。

高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。瞭解了這些就能學好高等數學的函式了。

7樓:匿名使用者

函式考察的題目有以下幾點:

1、定義域

2、值域

3、最值(最大最小)

4、圖象對稱

5、交點

6、平移

而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。

8樓:沙漠射手

我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律

高等數學都學什麼?

9樓:demon陌

高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

10樓:愛要一心

這是目錄:

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。

11樓:匿名使用者

一、函式 極限 連續

二、一元函式微分學

三、一元函式積分學

四、微分方程初步

五、向量代數 空間解析幾何

六、多元函式微分學

七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數

它的資料和講義,網上有很多。

12樓:匿名使用者

主要就是定積分還有微積分方面的知識

13樓:天涯客

函式,極限,連續

一元函式微分

一元函式積分

多元函式微分

多元函式積分

常微分方程

學習高等數學有什麼用處?

14樓:匿名使用者

1、可以培養思維能力

2、可以應用到其他學科的學習

3、專升本或考研都需要考數學

4、最直接的,期末考試要考,過了才能畢業,才能拿到畢業證

對於高等學校工科類專業的本科生而言,高等數學課程是一門非常重要的基礎課,它內容豐富,理論嚴謹,應用廣泛,影響深遠。

不僅為學習後繼課程和進一步擴大數學知識面奠定必要的基礎,而且在培養學生抽象思維、邏輯推理能力,綜合利用所學知識分析問題解決問題的能力,較強的自主學習的能力,創新意識和創新能力上都具有非常重要的作用。

擴充套件資料

高等數學包括:

數學分析:主要包括微積分和級數理論。微積分是高等數學的基礎,應用範圍非常廣,基本上涉及到函式的領域都需要微積分的知識。

級數中,傅立葉級數和傅立葉變換主要應用在訊號分析領域,包括濾波、資料壓縮、電力系統的監控等,電子產品的製造離不開它。

實變函式(實分析):數學分析的加強版之一。主要應用於經濟學等注重資料分析的領域。

複變函式(複分析):數學分析加強版之二。應用很廣的一門學科,在航空力學、流體力學、固體力學、資訊工程、電氣工程等領域都有廣泛的應用,所以工科學生都要學這門課的。

15樓:匿名使用者

網友發帖詢問高等數學的用途,這個問題回答起來頗為不易,主要原因倒不是用途不清,而是用途太多了,多到這樣文章n篇也說不完的地步。敝人不才,願意拋磚引玉,和大家一起**。

高等數學這個詞是從蘇聯引進的,歐洲作為高等數學的發源地,並沒有這樣的說法。這個高等是相對於幾何(平面、立體,解析)與初等代數而言,從目前的一般高校教學,高等數學主要指微積分。一般理工科本科學生,還需要學習更多一些,包括概率論和數理統計,線性代數,複變函式,泛函分析等等,這些都可以放到高等數學範疇裡面。

當然,這些只是現代數學的最基本的基礎,不過,即使是這個基礎,就可以應付很多現實的任務。

這裡只說說微積分,一言而蔽之,微積分是研究函式的一個數學分支。函式是現代數學最重要的概念之一,描述變數之間的關係,為什麼研究函式很重要呢?還要從數學的起源說起。

各個古文明都掌握一些數學的知識,數學的起源也很多很多,但是一般認為,現代數學直承古希臘。古希臘的很多數學家同時又是哲學家,例如畢達哥拉斯,芝諾,這樣數學和哲學有很深的親緣關係。古希臘的最有生命力的哲學觀點就是世界是變化的(德謨克利特的河流)和亞里斯多德的因果觀念,這兩個觀點一直被人廣泛接受。

前面談到,函式描述變數之間的關係,淺顯的理解就是一個變了,另一個或者幾個怎麼變,這樣,用函式刻畫複雜多變的世界就是順理成章的了,數學成為理論和現實世界的一道橋樑。

微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。這些理論都能解決什麼問題呢?下面先舉兩個實踐中的例子。

舉個最簡單的例子,火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。

為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。

我相信讀者在看這篇文章的時候是在使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。

計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。

這個兩個例子牽扯的數學知識並不太多,但是已經顯示出微積分非常大的力量。實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。

數學是軟體開發的基礎,有許多學數學的最後都轉行搞軟體.

16樓:匿名使用者

對於高等學校工科類專業的本科生而言,高等數學課程是一門非常重要的基礎課,它內容豐富,理論嚴謹,應用廣泛,影響深遠。不僅為學習後繼課程和進一步擴大數學知識面奠定必要的基礎,而且在培養學生抽象思維、邏輯推理能力,綜合利用所學知識分析問題解決問題的能力,較強的自主學習的能力,創新意識和創新能力上都具有非常重要的作用。

數學是研究現實世界數量關係和空間形式的學科.隨著現代科學技術和數學科學的發展,「數量關係」和「空間形式」有了越來越豐富的內涵和更加廣泛的外延.數學不僅是一種工具,而且是一種思維模式; 不僅是一種知識,而且是一種素養; 不僅是一門科學,而且是一種文化.

數學教育在培養高素質科技人才中具有其獨特的、不可替代的作用。

17樓:反賤導彈

能讓人更聰明,學的知識多,懂的東西多,人不就感覺聰明瞭嗎?

竟然有人踩我,說讀書不好的人都是不好好學習,或學習不好的人!自己想想一個讀了12年書的高中生和讀了24年書的博士生,他們的智商水平差距是不成比例的!

18樓:匿名使用者

應用於自己的專業,大學多數專業都會用到,學高數的同時你的思維會得到提升,其實以前是學數學,現在是進一步深入的學習,高數在工科中有著舉足輕重的地位,承上啟下,

19樓:愛羽客

學習高等數學可以:

1、加強你的邏輯思維能力;

2、增加你的推斷能力;

3、增強你解決問題的能力。

20樓:撲克霏

。。。。。。。我也不知道可能是為了生活

學習高等數學需要什麼高中基礎?

21樓:大大的

導數和函式、複變函式與積分、概率論、線性代數。

導數和函式要學好,這部分到大學還會進一步學習,大學微積分的學習,跟高中聯絡最緊密的就是函式導數和極限部分,這部分應該學好,空間幾何也用到一些。

複變函式與積分的學習,與高中的複數有一點關係,高中學的是基礎定義和部分應用,到大學會把微積分聯絡在一起深入學習,所以,學好複數部分對以後更好的學習有不少幫助。

概率論的學習,不再像高中是學習排和組合,當然學好這部分的概率和期望對以後理解很有幫助,概率論更多的是學習其他概率分佈模型。

線性代數的學習,是一門工程數學,解方程n元一次組,n維相量、矩陣等等,實際中應用廣泛,好好理解下相量空間,這門學科跟以前聯絡不多,好好學一定會學好的。

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。工科、理科研究生考試的基礎科目。

求函式zx2y3當x2,y1,x002,y

az ax 2xy 3 az ay 3x 2y 2得到dudz 2xy 3dx 3x 2y 2dy將x 2,y 1,zhi daox 0.02,y 0.01 版dx x 0.02,dy y 0.01 代入得到 dz 2 2 1 0.02 3 4 1 0.01 0.04f x x,y y f x,y ...

已知兩個函式y1x2ax13a3,y2x2x3a

假設 兩個函bai數都不在x軸上方 du 有 y1的 4a2 4 1 根號 zhi3 a 根號3 整理得dao 回4a2 4 1 根號3 a 4根號3 0化簡 4 a 根號3 a 1 0 a的取值 答y2的 4 12a2 解得 所以假設不成立即函式的圖象至少有一個位於x軸的上 已知兩個函式 y x ...

若一次函式y kx b經過點 x1,y1x2,y2 ,當x1x2時y1y2,影象經過第二象限,則k,b所取值的符號

x1y2得斜率k 0,影象經過第二象限,得在y軸上的截距b 0 k 0,b正負都有可能 一次函式y kx b過 x1,y1 x2,y2 求b和k的值 用x1y1x2y2表示 解由題知 y1 kx1 b y2 kx2 b 兩式相減得k x1 x2 y1 y2 即k x1 x2 y1 y2 把k x1 ...