設f x 是n次復多項式,其中n 1,證明f x 在複數範圍至多有n個互不相同的根

2021-04-21 17:40:52 字數 3595 閱讀 5326

1樓:匿名使用者

n次方程最多n個根,這n個根都可能不相等啊

高等數學,線性代數,數學,n次多項式怎麼會有n+1個解的?

2樓:匿名使用者

原因:代數基本定理:複數域上的n(n是正整數)次多項式,有且有n個根。零多

項式是一個常數f(x)=0。不管x取什麼值,總有f(x)=0.所以零多項式有無窮多個根,有n+1=0+1=1個根。

代數學基本定理:任何復係數一元n次多項式 方程在複數域上至少有一根(n≥1),由此推出,n次復係數多項式方程在複數域內有且只有n個根。代數基本定理在代數乃至整個數學中起著基礎作用。

據說,關於代數學基本定理的證明,現有200多種證法。

3樓:匿名使用者

代數基本定理:複數域上的n(n是正整數)次多項式,有且有n個根。

這個定理第一次嚴格證明,是由高斯給出的。

零多項式,是一個常數f(x)=0。不管x取什麼值,總有f(x)=0.所以零多項式有無窮多個根,當然也有n+1=0+1=1個根.

4樓:哭泣的小兒

正式因為它的解多於階數所以方程只有唯一的零解

為什麼n次一元方程在複數域內有n個根

5樓:闕睿才榮映

^.x2xn..;=k時成立

對m=k+1時

g(x)=x^n+a(n-1)x^(n-1)..xn)

設為x1,j(c2))記為ij則

xi+xj+c1xixj=a屬於c

xi+xj+c2xixj=b屬於c

則容易解得

xi+xj=(c2a-c1b)/.(x-xn)=g(x)對比係數)知

u1=-a(n-1)

u2=a(n-2)

..;(c1-c2)屬於c則xi

xj為復係數2次方程

x^2-

(c2a-c1b)/,.,j有

xi+xj+cxixj為複數

(注意到ij

是與c有關的

所以記為i(c)

j(c))

因為(i.+a0

(n=2^mq)

為實域r上多項式

則在某一拓域f上有n個根(用到域的拓張的知識

如果不懂

可以想象

取x1為

一個字定義他滿足上述方程

講其加到

r上得r上拓域記為r(x1)

當然這一點是要證明的

不過涉及知識比較多

理解一下就好

然後原多項式可分解為

(x-x1)g1(x)

接著繼續取g1(x)=0的根x2

得r(x1.;(c1-c2)=0

的2根由2知

xixj為複數

所以f(x)=0有復根

4復係數方程有復根

證設f(x)為復係數多項式

f1(x)為他的共軛

則g(x)=f(x)f1(x)為實係數多項式

所以g(x)=0有復根x

則為f(x)=0或f1(x)=0的根

所以x或x的共軛為f(x)=0的復根

5復係數n次方程有n個復根(計入重根)

(這是明顯的

因為由5

知n次復係數方程f1(x)=0有復根

設為x1則f可分解

有f1(x)=(x-x1)f2(x)

其中f2為復係數n-1次多項式

所以有復根x2則

f1(x)=(x-x1)(x-x2)f3(x)

一直下去得

f(x)=(x-x1)(x-x2).un的多項式

其中u1=x1+x2+..

un=(-1)^n

*a所以

u1.,j)的數對只有有限多個

但c屬於r有無窮多

所以存在

c1不=c2有

(i(c1).......xn

則g(x)=(x-x1)..;=0

將他們全部相乘

得h(x)

則h(x)

為n(n+1)/...xn

u2=x1x2+x1x3+........,j(c1))=(i(c2)..xn

由韋達定理(或者說由(x-x1)(x-x2)..;(c2-c1)屬於c

xixj=(a-b)/.

un=x1x2.;j>.;(c2-c1)x+(a-b)/2=2^(m-1)q(n+1)次注意到

q(n+1)為奇數

再看h(x)

易知h(x)中每項係數都為

x1...un為實數

所以h(x)為實係數多項式

所以由歸納假設知

h(x)=0有復根

所以存在某個

i.xn-2xn-1xn

..,x2...,x2....x1xn+x2x3...,u2......,x2.;=i>..,x2)

一直做下去

可得在某1拓域上

g(x)=0有n個根

x1....+xn-1xn

u3=x1x2x3+x1x2x4.(x-xn)

對實數c

有作x-(xi+xj+cxixj)

對每個n>..xn在r上的對稱多項式

由對稱多項式基本定理

知每項係數

都能寫成

u1..這個是代數基本定理,高斯最早給的證明

我只記得一個在抽象代數書上的證明

證明比較長

思路大概是

1實係數奇數次方程有實根

(這隻要用數學分析中連續函式的介值定理)

2復係數2次方程有2復根

(配方法就行)

3實係數方程有復根

證(粗略的)

次數設為

2^mq

q為奇數

對m歸納

m=0時

由1得證

若m>

高等數學 將多項式x^n--1在複數範圍內和實數範圍內因式分解

6樓:匿名使用者

實數襲範圍

x^n-1

=(x-1)[x^(n-1)+x^(n-2)+……+x+1]複數範圍

x^n-1

=(x-1)(x-x1)(x-x2)……[x-x(n-1)]其中x1=cos(2π/n)+isin(2π/n)x2=cos(4π/n)+isin(4π/n)……x(n-1)=cos[2(n-1)π/n]+isin[2(n-1)π/n]

代數基本定理有何意義呢?複數系n次代數方程在複數範圍內有n個根?不是實數,而是複數?

7樓:匿名使用者

複數本來就是包括了實數和虛數的啊。

實數都屬於複數

虛數也都屬於複數。

所以說複數的時候,自然而然就包括了實數和虛數。

當然也包括虛數中的純虛數。

8樓:匿名使用者

由於代數基本定理為:任何復係數一元n次多項式方程在複數域上至少有一根(n≥1),由此推出,n次復係數多項式方程在複數域內有且只有n個根(重根按重數計算),也就是n個複數根。複數就像你說的,為包括所有的實數與虛數的數。

代數基本定理在代數乃至整個數學中起著基礎作用,它影響著許多學科的發展。

設f x 在x處有n階導數,且f x0 fx0f n 1 x0 0,f n x 0,當n為奇數時

做一下taylor f x f x0 0x 0x f x0 x x0 n n o x x0 n x離x0充分近的時候f x f x0 和f x0 x x0 n n 同號 當n是偶數的時候上式在x0的小鄰域內不變號,而當n是奇數的時候在x0兩側會變號 設f x 在x0點的某個鄰域記憶體在 n 1 階連...

設函式f x 在R內有定義,x0是函式f x 的極大值點,則

選da項,x0是極大值點來,不是最大值點,因源此不能滿足在整個定義域上值最大 b項,f x 是把f x 的影象關於y軸對稱,因此,x0是f x 的極大值點 c項,f x 是把f x 的影象關於x軸對稱,因此,x0是 f x 的極小值點 d項,f x 是把f x 的影象分別關於x軸 y軸做對稱,因此 ...

設函式f x 可導,F(x)f x 1 x則f(0)0是F(x)存在的(什麼條件)

證明 去掉絕對值符號後,函式f x 化簡得 f x f x xf x x 0 f x f x x 0 f x f x xf x x 0 1 f 0 0是f x 存在的充分條件 因為函式f x 可導,所以 i 當x 0時,f x f x f x xf x ii 當x 0時,f x f x f x xf...