計算不定積分 arcsin x lnx x dx十

2021-08-04 20:14:19 字數 814 閱讀 7059

1樓:匿名使用者

計算不定積分∫[arcsin√x +(lnx)/√x)]dx

解:原式=∫(arcsin√x )dx+∫(lnx)/√x)]dx

先作第一個積分:令arcsin√x=u,則√x=sinu,x=sin²u,dx=2sinucosudu=sin(2u)du;

故∫(arcsin√x )dx=∫usin(2u)du=-(1/2)∫udcos(2u)=-(1/2)[ucos2u-∫cos2udu]

=-(1/2)[ucos2u-(1/2)∫cos2ud(2u)]=-(1/2)ucos2u+(1/4)sin2u

=-(1/2)[u(cos²u-sin²u)]+(1/2)sinucosu=-(1/2)[(1-2x)(arcsin√x)]+(1/2)√[x(1-x)]

再作第二個積分:令√x=u,則x=u²,lnx=lnu²=2lnu, dx=2udu,故

∫(lnx)/√x)]dx=4∫lnudu=4[ulnu-∫du]=4(ulnu-u)=4u(lnu-1)=4(√x)[ln(√x)-1]

於是得∫(arcsin√x )dx+∫(lnx)/√x)]dx=-(1/2)[(1-2x)(arcsin√x)]+(1/2)√[x(1-x)]+4(√x)[ln(√x)-1]+c

2樓:

1、令√(x+1)=u,則x=u -1,dx=2udu ∫(lnx)/√(1+x) dx =∫ ∫(arcsin√x)/√x dx =2∫(arcsin√x)d√x令√x=u =2∫(arcs

3樓:匿名使用者

令x=y^2,下面的就應該會了啊

不定積分的計算,計算不定積分

令x sint 積分化為 costdt sin tcost dt sin t csc tdt csctcott 1 csc t csctdt csctcott csctdt csc tdt csctcott lnicsct cotti csc tdt 所以 csc tdt csctcott lnic...

不定積分問題,不定積分問題計算

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f 即f f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。根據牛頓 萊布尼茲公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。現實應用主要在工程領域,算水壓力 結構應力等都要用不定積...

怎麼計算不定積分,不定積分怎麼算?

這個是典型的換元法積分 雖然方法說起來很容易,但是能不能做出來還是要看你對導數形式的熟練程度比如這一題,如果你能看到e x就立即想到將e x放到d的後面,因為de x e xdx 再比如,你看到了 sinxcosxdx,你就應該立即想到 sinx cosx,然後將cosx換成sinx放到d的後面 s...