在1 100這自然數中取出兩個不同的數相加,其和是

2021-09-01 20:48:09 字數 2871 閱讀 1566

1樓:中國太行人

1-100這100個自然數從1開始,每4個連續數為一組,可以分為25組。每一組中的任意一個數都可以在其他組中找到一個,並且只能找到一個與它和是4的倍數的數。也就是每個數都有24個對應的組合。

但是,第二組再組合時就有一個是與前面的重複,應該扣除。因此計算方法就是

(24+23+22+ ......+1)x4=(1+24)/2x24x4

=200

2樓:匿名使用者

1+3、1+7、2+6、3+5、1+11、2+10、3+9、4+8、5+7、1+15、2+14、3+13、4+12、5+11、6+10、7+9、1+19、2+18、3+17、4+16、5+15、6+14、7+13、8+12、9+11、1+23、2+22、3+21、4+20、5+19、6+18、7+17、8+16、9+15、10+14、11+13、1+27、2+26、3+25、4+24、5+23、6+22、7+21、8+20、9+19、10+18、11+17、12+16、13+15、1+31、2+30、3+29、4+28、5+27、6+26、7+25、8+24、9+23、10+22、11+21、12+20、13+19、14+18、15+17、1+35、2+34、3+33、4+32、5+31、6+30、7+29、8+28、9+27、10+26、11+25、12+24、13+23、14+22、15+21、16+20、17+19、1+39、2+38、3+37、4+36、5+35、6+34、5+33、6+32、7+31、8+30、9+29、10+28、11+27、12+26、13+25、14+24、15+23、16+22、17+21、18+20、1+43、2+42、3+41、4+40、5+39、6+38、7+37、8+36、9+35、10+34、11+33、12+32、13+31、14+30、15+29、16+28、17+27、18+26、19+25、20+24、21+23、1+47、2+46、3+45、4+44、5+43、6+42、7+41、8+40、9+39、10+38、11+37、12+36、13+35、14+34、15+33、16+32、17+31、18+30、19+29、20+28、21+27、22+26、23+25、1+51、2+50、3+49、4+48、5+47、6+46、7+45、8+44、9+43、10+42、11+41、12+40、13+39、14+38、15+37、16+36、17+35、18+34、19+33、20+32、21+31、22+30、23+29、24+28、25+27、1+55、2+54、3+53、4+52、5+51、6+50、7+49、8+48、9+47、10+46、11+45、12+44、13+43、14+42、15+41、15+40、17+39、18+38、19+37、20+36、21+35、22+34、23+33、24+32、25+31、26+30、27+29、1+59、2+58、3+57、4+56、5+55、6+54、7+53、8+52、9+51、10+50、11+49、12+48、13+47、14+46、15+45、16+44、17+43、18+42、19+41、20+40、21+39、22+38、23+37、24+36、25+35、26+34、27+33、28+32、29+31、1+63、2+62、3+61、4+60、5+59、6+58、7+57、8+56、9+55、10+54、11+53、12+52、13+51、14+50、15+49、16+48、17+47、18+46、19+45、20+44、21+43、22+42、23+41、24+40、25+39、26+38、27+37、28+36、29+35、30+34、31+33、32+32、33+31、34+30、35+29、36+28、37+27、38+26、39+25、40+24、41+23、42+22、43+21、44+20……以下省略,時間關係,請樓主自己算吧!

3樓:

1225

如需過程,追問即發

在1到100這100個自然數中取出兩個不同的數相加,其和是3的倍數的共有()種不同的取法

4樓:

這一百個數可以抄分為1,

襲4,7.。。。2,5,8.。。3,6,9.。。

即①3k+1有34個,②3k+2有33個,③3k+3有33個取出兩個數,2個①是6k+2不符

2個②是6k+4不符,2個③6k+6符合

①+②=6k+3符合,①③,②③不符合

所有有2個③33種,①+②33種

一共66種,主要就是分開3k+1,3k+2,3k+3的問題

在1~100的100個數中取出兩個不同數相加,使其和是3的倍數,問有______種不同取法

5樓:凌風仍刨

根據題意將1~100中的這100個數分為3k,3k+1,3k+2這三個型別的數:

3k型數有

:3,6,…

回,99,共33個;答

3k+1型數有:1,4,7,…,100,共34個;

3k+2型數有:2,5,…,98,共33個.一種方法是在33個3k型數中任取兩個相加:共有33×32÷2=528種取法,

還有一種方法是在34個3k+1型數中取1個,在33個3k+2型數中取1個:共有33×34=1122種取法.

所以取法總數為:528+1122=1650種.故答案為:1650.

在1到100的100個數中取出兩個不同數相加,使其和是3的倍數,問有多少種不同取法

6樓:你不知道的細節

1——100中,被3整除餘1的數有34個,餘2的數有33個,3的倍數有33個

在3的倍數中任取兩個,其和顯然都是3的倍數,這樣的取法共有c(33,2)=528種

在餘1的數中取1個,再在餘2的數中取1個,取得的兩個數的和也是3的倍數,這樣的取法有34×33=1122種

故一共有528+1122=1650種取法

有問題可以追問我;

滿意了,隨手採納下啊!

謝謝lz~~

從1至8這自然數中,每次取出兩個不同的數相加,要使它們的

兩數之和大抄於10,有以下可能 襲 8 7 15,bai 8 6 14,8 5 13,8 4 12,8 3 11,7 6 13,7 5 12,7 4 11,6 5 11 一共是du9種不同的取法 zhi 答 共有 dao9種不同的取法 從1到50這50個自然數中,取兩個數相加,要使它們的和大於50,...

在1,2,3 76這自然數中,取兩個不同的數,使得它們的和是7的倍數,共有多少種不同取法

把這些數按除7的餘數分成7類 餘數分別為0,1,2,3,4,5,6。餘數是0的有7,14,21,28,35,42,49,56,63,70 餘數是1的有1,8,15,22,29,36,43,50,57,64,71 餘數是2的有2,9,16,23,30,37,44,51,58,65,72 餘數是3的有3...

9在1自然數中取出兩個不同的數相加,其和是3的

先對復這100個數進行分類 第一類,除以 制3餘數為bai1的,共有du34個 第二類,zhi除以3餘數為2的,共有33個 第三類,能被 dao3整除的,共33個。要使得取出的兩個數之和恰好是3的倍數,則有兩種可能 一種是兩個數都是3的倍數,即從第三類數取,這種取法有33 32 2 528 種 另一...