函式f x x 3 ax 2 x 1,a R 1 討論函式f x 的單調區間 2 設函式f x 在 2 3 是減函式,求a的取值範

2022-03-30 03:45:12 字數 2645 閱讀 6798

1樓:箭衡

解:(1)f'(x)=3x^2+2ax+1①-√3<a<√3時,△<0,因為開口向上,所以f'(x)>0此時在r上遞增

②a=√3,-√3時,△=0,f'(x)≥0,此時也是在r上遞增

③a>√3,a<-√3時

△>0x<[-a-√(a^2-3)]/3,x>[-a+√(a^2-3)]/3,則f'(x)>0

此時是增函式

[-a-√(a^2-3)]/3<x<[-a+√(a^2-3)]/3,f'(x)<0

此時是減函式

(2)因為f(x)在區間(-2/3,-1/3)內是減函式所以f'(x)=3x^2+2ax+1<0

所以f'(-2/3)<0,f'(-1/3)<0所以a>2

([-a-√(a^2-3)]/3 [-a+√(a^2-3)]/3是令f'(x)=0解出來的,用求根公式)

是算錯了,改過來了,

2樓:秋水琳怡

學過導數沒有?

求f(x)的一階導數d(f)/dx=3x^2+2ax+1,使該式子大於0的區間為增,小於0的為減區間。

函式f(x)=x^3+ax^2+x+1,a∈r.(1)討論函式f(x)的單調區間(2)設函式f(x)在(-2/3,-1/3)是減函式,求a的取值範

3樓:我是籃球

這種題解著真麻煩。。你參考我講的另一道過程吧

4樓:匿名使用者

此問題的解決方案,真正的麻煩。 。另一個過程中,我說的是你的參考

問題是 已知函式f(x)=x^3+ax2+x+1,a∈r (1)討論函式f(x)的單調區間

5樓:匿名使用者

^f(x)=x^3+ax^2+x+1,

f'(x)=3x^2+2ax+1,

(1)討論f(x)的單調區間:

令f'(x)=0,即3x^2+2ax+1=0,

其中△=4(a^2-3),

①當|a|≤√3時,在(-∞,+∞)上,所以f'(x)≥0,f(x)在(-∞,+∞)上單調增加;

②當|a|>√3時,

在(-∞,

-[a+√(a^2-3)]/3]及(-[a-√(a^2-3)]/3,+∞)上f'(x)≥0,f(x)單調增加;

在(-[a+√(a^2-3)]/3,-[a-√(a^2-3)]/3]上f'(x)≤0,f(x)單調減少。

(2)f(x)在區間(-2/3,-1/3)內是減函式,說明

(-2/3,-1/3)是(-[a+√(a^2-3)]/3,-[a-√(a^2-3)]/3)的子集,

必須同時有①-[a+√(a^2-3)]/3≤-2/3,②-[a-√(a^2-3)]/3≥-1/3,

即①√(a^2-3)≥2-a,②√(a^2-3)≥a-1,

解不等式得a≥2。

. 【解法二】根據三次項係數大於0的特點,f(x)在區間(-2/3,-1/3)內是減函式的充要條件是:f'(-2/3)≤0,且f'(-1/3)≤0,同樣可以得到

a≥2。

6樓:大豆芽_傻瓜

^1)求函式的導數f'(x)=3x^2+2ax+1.

如圖,位於兩根之間,f'(x)<0,所以f(x)在( [-a-sqrt(a^2-3)]/3 , [-a+sqrt(a^2-3)]/3 )上是單調遞減函式,而在兩根之外,f'(x)>0,即在( -無窮,[-a-sqrt(a^2-3)]/3 )並( [-a+sqrt(a^2-3)]/3 ,+無窮)上是單調遞增函式。

2)如圖

區間必須落在( [-a-sqrt(a^2-3)]/3 , [-a+sqrt(a^2-3)]/3 )上,即[-a-sqrt(a^2-3)]/3≤-2/3且[-a+sqrt(a^2-3)]/3≥-1/3,解不等式有a≥2

求函式f(x)=(x-1)(x^2/3)的單調區間與極值點

7樓:demon陌

^f極小值=f[-(2/5)^1/2]

f極大值=f[(2/5)^1/2]

先求導數

f'(x)=x^(2/3)+2(x-1)/(3*x^(1/3))=[ x+5x/3-2/3] /(x^(1/3))令f'(x)=0,得x=2/5

(1)在x>0時,

當0當x>2/5時,f'(x)>0,f(x)單調增所以x=2/5為極大值點。

(2)在x<0時,f'(x)>0,f(x)單調增,又原函式在x=0處有定義且連續,因此在x=0處有極大值點。

8樓:

^是x的2/3次方還是x的平方除以3呀?

以x的2/3次方來求解。

先求導數

f'(x)=x^(2/3)+2(x-1)/(3*x^(1/3))=[ x+5x/3-2/3] /(x^(1/3))令f'(x)=0,得x=2/5

(1)在x>0時,

--當0--當x>2/5時,f'(x)>0,f(x)單調增所以x=2/5為極大值點。

(2)在x<0時,

--f'(x)>0,f(x)單調增

又原函式在x=0處有定義且連續,因此在x=0處有極大值點。

影象如圖所示:

9樓:匿名使用者

f極小值=f[-(2/5)^1/2]

f極大值=f[(2/5)^1/2]

問題是已知函式fxx3ax2x1aR

f x x 3 ax 2 x 1,f x 3x 2 2ax 1,1 討論f x 的單調區間 令f x 0,即3x 2 2ax 1 0,其中 4 a 2 3 當 a 3時,在 上,所以f x 0,f x 在 上單調增加 當 a 3時,在 a a 2 3 3 及 a a 2 3 3,上f x 0,f x...

急已知函式fxx3ax2x1在R

f x 3x 2 2ax 1 若函式時單調的只需 f x 0 當x a 3導數取極值 f a 3 a 2 3 2a 2 3 1 a 2 3 1 當極值 0函式就是單調的 即 根號3 將f x x 3 ax 2 x 1求導得到f x 1 3x 2 2ax 1.因為f x 在r上是單調函式所以f x 1...

設函式fxx2ex1ax3bx2,已知x2和

62616964757a686964616fe4b893e5b19e31333335336537i 因為f x ex 1 2x x2 3ax2 2bx xex 1 x 2 x 3ax 2b 又x 2和x 1為f x 的極值點,所以f 2 f 1 0,因此?6a 2b 0 3 3a 2b 0 解方程組...