求nnn2的斂散性,1n2n斂散性

2021-05-20 06:53:37 字數 1556 閱讀 1511

1樓:匿名使用者

^收斂。

比值判別法。

u(n+1)/u(n)=/[n^n/(n!)^2]=[(n+1)^(n+1)/n^n]/(n+1)^2=[(n+1)/n]^n/(n+1)=e/(n+1)=0<1

故原級內數收斂。容

∑1/(n^2+n)斂散性

2樓:遠巨集

∑bai1/(n2+n) = ∑1/n(n+1) = ∑[1/n - 1/(n+1)]

部分來和dusn=1 - 1/2 +1/2 -1/3 +1/3 - 1/4 +......+1/n - 1/(n+1)

=1 - 1/(n+1)

故級數zhi和

s=lim[n→∞自dao]sn=lim[n→∞][1 - 1/(n+1)]

=1-0=1

故級數收bai斂

擴充套件資料:du

在實際的數學研究

zhi以及物理、天文等其

dao它學科的應用中,經常會自然地涉及各種發散級數,所以數學家們便試圖給這類發散級數客觀地指派一個實或復的值,定義為相應級數的和,並在這種意義之下研究所涉及的發散級數。

每一種定義都被稱為一個可和法,也被理解為一類級數到實數或複數的一個對映,通常也是一個線性泛函,例如阿貝爾可和法、切薩羅可和法與波萊爾可和法等。

可和法通常保持收斂級數的收斂值,而對某些發散級數,這種可和法和能額外定義出相應級數的和。例如切薩羅可和法將格蘭迪級數。

3樓:遠巨集

∑copy1/(n2+n) = ∑1/n(n+1) = ∑[1/n - 1/(n+1)]

部分和sn=1 - 1/2 +1/2 -1/3 +1/3 - 1/4 +......+1/n - 1/(n+1)

=1 - 1/(n+1)

故級數和

s=lim[n→∞]sn=lim[n→∞][1 - 1/(n+1)]=1-0=1

故級數收斂

4樓:victory與

答案是發散的 不要弄錯了 1/ n –1/ n +1,因為二者都是發散的,所以結論是發散的。至於縮放成1/ n ^2是不可以這樣縮放的

5樓:匿名使用者

該級數收斂。詳細過程如下:

以上,請採納。

6樓:晴天擺渡

∑1/(n2+n) = ∑1/n(n+1) = ∑[1/n - 1/(n+1)]

部分和sn=1 - 1/2 +1/2 -1/3 +1/3 - 1/4 +......+1/n - 1/(n+1)

=1 - 1/(n+1)

故級數和

s=lim[n→∞

內]sn=lim[n→∞][1 - 1/(n+1)]=1-0=1

故級數收容斂

7樓:沈傑星

∑1/(n^2+n),由於1/(n^2+n)=1/n(n+1)<1/n^2

而∑1/n^2 收斂,則∑1/(n^2+n)收斂

是不是專升本的同學啊,我這個才是正確的答案哦

連加符號12n1求其斂散性, 1 (n 2 n)斂散性

bai1 n n 1 n n 1 1 n 1 n 1 部分來和dusn 1 1 2 1 2 1 3 1 3 1 4 1 n 1 n 1 1 1 n 1 故級數zhi和 s lim n 自dao sn lim n 1 1 n 1 1 0 1 故級數收bai斂 擴充套件資料 du 在實際的數學研究 zh...

求2n 1 2 n的斂散性,並求和

簡單計算一下即可,答案如圖所示 lets 1.1 2 0 2.1 2 1 n.1 2 n 1 1 1 2 s 1.1 2 1 2.1 2 2 n.1 2 n 2 1 2 1 2 s 1 1 2 1 2 2 1 2 n 1 n.1 2 n 2 1 1 2 n n.1 2 ns 4 1 1 2 n 2n...

利用級數的性質判定n212n2n1的斂散性

liman lim n 2 1 2n 2 n 1 lim 1 1 n 2 2 1 n 1 n 2 1 2 0,即一般項極限不為 0 則級數發散。首先,收斂半徑一般很好求,直接套用公式 冪級數的通項,後一項u n 1 除以專u n 再求屬極限,此極限就是收斂半徑。然後,判斷端點處冪級數是否收斂,也就是...