1樓:傑克兄弟
該函式是直線函式,所以其斜率(導數的幾何含義)固定不變,如果直線是與x軸平行,那麼一階導數就是0了
2樓:匿名使用者
該書數是一個常數,變化率為0
3樓:匿名使用者
為了得到工程中某一變數的變化規律,推導或者通過實驗得到方程,對方程求導並令其等於零,可得到變數的極值。
一二階導數等於零各是什麼意義
4樓:g燦寶兒
一階導數等於零表示函式斜率固定,一階導數等於0只是有極值的必要條件,不是充分條件,也就是說:有極值的地方,其切線的斜率一定為0;切線斜率為0的地方,不一定是極值點。
二階導數沒有特別的幾何意義,通常可以根據二階導數的符號變化,判斷函式曲線的凹凸性及拐點,或用來判斷所求駐點是否是極值點並且取得極大還是極小。二階導數等於零說明此為函式的極點。
擴充套件資料
二階導數的性質
1、如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:
f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。
2、判斷函式極大值以及極小值。
結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。
3、函式凹凸性。
設f(x)在[a,b]上連續,在(a,b)內具有一階和二階導數,那麼,若在(a,b)內f''(x)>0,則f(x)在[a,b]上的圖形是凹的;若在(a,b)內f''(x)<0,則f(x)在[a,b]上的圖形是凸的。
5樓:雙子星的墮落
一階導數等於零表示函式斜率固定
二階導數沒有特別的幾何意義,通常可以根據二階導數的符號變化,判斷函式曲線的凹凸性及拐點,或用來判斷所求駐點是否是極值點並且取得極大還是極小。二階導數等於零說明此為函式的極點
6樓:悅瑙
一階導為零的點叫駐點,某點是函式的極值點的必要條件是該點處一階導為零,某點是函式的拐點的必要條件是該點處二階導為零。
一階導等於0,二階導數大於0什麼意思
7樓:不想取名字啊西
代表該點為函式影象上的某個極小點。
拓展資料:1.極值點是函式影象的某段子區間內上極大值或者極小值點的橫座標,出現在函式的駐點或不可導點處。
極值點必定是駐點。但駐點不一定是極值點。
2.判別方法
(1)若函式可導
若函式可導,且一階導函式在該點兩邊正負號不同則 該點是函式的極大點(或極小點)
若函式存在二階導數,且某點一階導函式為零,若二階導函式大於零則是函式的極小點;若小於零則是函式 的極大點。
(2)若函式 在一些點不可導,則需要利用定義判斷。
8樓:匿名使用者
1) 表示該點是駐點;
2) 並在駐點鄰域內取極小值。
9樓:匿名使用者
函式與一階導區域範圍連續可導,一階導等於0 ,有極值和平行的兩種可能性,二階導大於0,為極小值。
一階導數為0 是駐點是什麼意思?是x為駐點?
10樓:宥噲
函式的駐點:bai駐點:一階導數為零。
du可導函式f(x)的極值zhi
點一定是dao它的駐點,不可導的點可以是極內值點容,但它不是駐點.但反過來,函式的駐點【不一定】是極值點. 在微積分,駐點(stationary point)又稱為平穩點或臨界點(critical point)是函式的一階導數為零,即在這一點,函式的輸出值停止增加或減少。
一階導數等於0,二階導數等於1,表示什麼??
11樓:匿名使用者
函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值。
一階導數為零,那麼為穩定點,二階導數為1>0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。
如果函式一階導數恆為0,那麼更高階導數必然都為0。類似的,一階導數為0,二階導數若小於0,那麼就是極大值了。
導數最大的作用是判斷複雜函式的單調性,我們可以很簡單的求一次導數,然後通過求導函式的根,就可以判斷出函式的單調區間,進而知道函式的趨勢影象,不過這只是最基礎的導數的應用。
求一次導數之後無法求出導函式的根,甚至也不能直接看出導函式的正負,因此無法判斷單調性,在高考中不管文理都有極大可能用到二階導數,雖然文科不談二階導數,其實只是把一階導數設為一個新函式,再對這個新函式求導,本質上依舊是二階導數。
擴充套件資料
二階導的用法:
判斷的單調性則需判斷的正負,假設的正負無法判斷,則把或者中不能判斷正負的部分(通常為分子部分)設為新函式,如果通過對進行求導繼而求最值,若或則可判斷出的正負繼而判斷的單調性。
如果調整函式轉化為一階導數並且還出現了一階導數最小值小於等於零,或一階導數最大值大於等於零的時候,則單純的二階導數將失靈,此時我們採用的是零點嘗試法,即確定一階導數的零點的大致位置。
零點嘗試法其實是無法求出一階導數的零點,且通過二階導數無法得出需要的一階導數的最值,此時一般可以根據二階導的恆正或恆負來判斷出一階導是否只有一個零點,若用零點存在性定理能判斷出一階導數只有一個零點,則設出這個零點為。
因為不知道準確零點的區間,因此可能很難找出符合題意區間的,例如確定出在某數之前或某數之後,但是所設的滿足=0,通過這個式子可以得到一個關於的等式。
然後所設的點肯定是原函式唯一的最值點,因此若求原函式的最值則需要結合這個等式,有的時候能求出一個不包含的最值或者含有一個很簡單的數或式子。
12樓:匿名使用者
應該說是函式在某一點處一階導數為0,二階導數為1,此時 表示函式在這一點取極小值(簡單解釋:一階導數為零,那麼為穩定點,二階導數為1>0,那麼一階導數在此點左邊為負,右邊為正,故原函式在此點左邊遞減,右邊遞增。即為極小值。
)如果函式一階導數恆為0,那麼更高階導數必然都為0.
類似的,一階導數為0,二階導數若小於0,那麼就是極大值了
13樓:衛理藍色蝴蝶飛
一階導數等於零,說明這個數是常數。二階導數等於1,說明原來的式子最高的是二次項,而且二次項是0.5x∧2
一階導數等於0二階導數等於0 這個點是什麼點
14樓:demon陌
這個說不準。沒準是極值點,比如y=x^4(4次方)這個函式,y'=4x3,y''=12x2,都是0,但是它是極小值點,可以檢驗x<0時候1階導數<0,x>0的時候1階導數大於零。 還有可能是拐點,比如y=x3這個函式,可以自己檢驗。
用分段的方法構造過一個在x=0無限階可導而且任何階導數都是0的函式,但是x=0是它的一個極小值點。
函式y=f(x)的導數y『=f』(x)仍然是x的函式,則y』=f』(x)的導數叫做函式y=f(x)的二階導數。在圖形上,它主要表現函式的凹凸性。
15樓:夢你落花
拐點或極值點,數學專業的建議參看數學分析簡明教程(鄧東皋,尹小玲 編著)第二版上冊p143-147
一階導數等於0為什麼二階導數還可以不為0??0的導數不就是0嗎
16樓:小小芝麻大大夢
一階函式恆為零的話,自然二階導數就是零了,但是如果僅僅是在駐點處(一階導數值等於零的點的話)才為零的話,二階導數自然就可以不為零了。
導數(英語:derivative)是微積分學中重要的基礎概念。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。
當函式f的自變數在一點x0上產生一個增量h時,函式輸出值的增量與自變數增量h的比值在h趨於0時的極限如果存在,即為f在x0處的導數。
擴充套件資料
一階導數表示的是函式的變化率,最直觀的表現就在於函式的單調性。
定理:設f(x)在[a,b]上連續,在(a,b)內具有一階導數,那麼:
(1)若在(a,b)內f'(x)>0,則f(x)在[a,b]上的圖形單調遞增;
(2)若在(a,b)內f』(x)<0,則f(x)在[a,b]上的圖形單調遞減;
(3)若在(a,b)內f'(x)=0,則f(x)在[a,b]上的圖形是平行(或重合)於x軸的直線,即在[a,b]上為常數。
17樓:匿名使用者
一階導數為0和一階導數在某點處為0是不同的.一階導數為0,意思是其一階導數在定義域內恆為0(說白了就是定義域上的常值函式),那麼二階導數也必然是0.但是一階導數在某點處為0,說白了只是該點處的斜率為0,但不代表二階導數("斜率"的"斜率")為0.
最簡單的例子是f(x)=x^2,那麼一階導數為2x(在x=0處,一階導數為0),二階導數為2(恆不為0).
18樓:一個調的情歌
你說的是某一個點的導數吧
加速度等於對速度時間的一階導數,等於位移對時間的二階導數,嗯...這句話是什麼意思?
19樓:匿名使用者
n階導數什麼時候都可以用,只是看有沒有相應的物理意義。
位移對時間的一階導數,就是位移隨時間的變化率,其物理意義就是速度;
位移對時間的二階導數,就是位移隨時間變化率隨時間的變化率,也就是速度隨時間的變化率,其物理意義就是加速度。加速度是由作用在物體上的外力和物體的質量決定的。
v = ds/dt,速度是單位時間裡位移的變化,也就是說速度 v 是位移 s 對時間 t 的一階導數。
a = dv/dt,意思就是加速度是單位時間裡速度的變化,也就是說,加速度 a 是速度 v 對時間 t 的一階導數,是位移 s 對時間 t 的二階導數。
20樓:匿名使用者
v = ds/dt,速度是單位時間裡位移的變化,也就是說速度 v 是位移 s 對時間 t 的一階導數。
a = dv/dt,意思就是加速度是單位時間裡速度的變化,也就是說,加速度 a 是速度 v 對時間 t 的一階導數,是位移 s 對時間 t 的二階導數。
21樓:化作彩虹的夢
初三求導應該還沒有學,你就理解成加速度是速度時間函式影象曲線的斜率,又應為位移時間函式影象的斜率是速度,所以二次導數是加速度。把導數理解成影象的斜率。
22樓:愛
首先導數是否明白啥意思?極限的概念是否瞭解?
如果明白的話,請聽解釋:
1,速度v,△t時間內,位矢的變化量是△r,因為速度等於位矢變化量/時間的變化量,也就是△r/△t,這裡你看,在非勻速直線運動情況下,是不是△t越小這個速度v約精確?這裡取△t無線接近於零,瞭解極限和導數的情況下,
v=△r/△t的意思也就是速度表示位矢對時間的求導,即v=dr/dt;這個導數是一階導數,意思是函式r對t求導一次。
2,加速度a,加速度表示,在單位時間△t內,速度的變化△v的變化大小,△v變化大加速度大,變化小加速度小,那麼跟速度一樣理解即可,即a=△v/△t,△t越趨近於零,則a越準確,因此就是
a=dv/dt,即加速度是速度對時間的一節求導。
3,把1中的v=dr/dt帶入2中的a=dv/dt,a也就等於在1式中已經由位矢對時間求導後的再一次求導,即加速度是位矢對時間的二次求導。
注:位矢即位移向量,可以理解為距離,但是距離是標量,只有大小沒有方向。在初中階段可以暫時不考慮這個位矢和距離的區別,都當做距離即可,不影響理解。
二階導數0,為什麼可以推出一階導數的大小
y的二階導數大於0不一定能得到y的一階導數大於0的結論。y的二階導數大於0只能說明y的一階導數函式是個遞增函式,那麼對於x 0,有y x y 0 如果恰好有y 0 0,才能得到你上面的結論。二階導數大於零,就一定說明一階導數大於零嗎?或者說,一階導數大於零就一定說明二階導數大於零嗎?二階導數大於0,...
極值點是一階導數為0的點和一階導數不存在的點,還是使原來的函式不存在的點
極值點是一階導數為0可能是極值點 導數不存在也可能是,但也可能不是 原來的函式不存在的點這個絕對不是 若f a 0,則x a是f x 的一個拐點,不一定是極值。若f a 0,則f x 在x a上不連續 原函式不存在?不存在就是沒有值啊!導數不存在點,與原函式無關 一階導數不存在那麼當二階導數為零的點...
0階導數是什麼意思?常數的0階導數是什麼?函式的0階導數呢
零階導數理解為本身,常數0階導數仍為本身,函式的0階導數為函式本身 零階就是不求導,這是規定,龜的腚,ok?0階導數就是函式本身。常數的導數是0那0的導數是多少 常數的導數是0,0也是常數,故0的導數還是0.什麼導數都可以用定義輕鬆證明.定義是個綜合概念,用這個概念分析就行了。定義是綜合,用定義做題...