三角形中位線定理的證明的幾種方法

2021-05-31 21:27:16 字數 5724 閱讀 8819

1樓:匿名使用者

1.欲證de=bc/2這種線抄段的倍半襲問題,往

往可以將bai短的線段放大,轉du化為證明zhi兩線段dao相等,此題可將線段de延長一倍至f,再連fc,把問題轉化為證明四邊形dfcb為平行四邊形。證明:延長de到f使de=ef,聯結fc ∵de是△abc的中位線 ∴ae=ec ad=db ∵∠aed=∠cef ∴△ade≌△fec ∴ad=fc ∴db=fc ∴∠a=∠ecf ∵cf‖ab ∴dbcf是平行四邊形 ∴df=bc ∴de‖bc 2.

八年級下冊第四章已學習過相似圖形,也可以利用相似三角形的知識來解決。 ∵ad=(1/2)ab,ae=(1/2)ac,∠dae=∠bac, ∴△ade∽△abc. ∴∠ade=∠abc,de:

bc=ad:ab=1:2.

∴de‖bc,de=(1/2)bc. 3.也可以用截長補短的方法構造全等三角形,再證出平行四邊形,得出結論。

三角形中位線的4種證明方法。 10

2樓:久伴

方法一:過c作ab的平行線交de的延長線於g點。

∵cg∥ad

∴∠a=∠acg

∵∠aed=∠ceg、ae=ce、∠a=∠acg(用大括號)∴△ade≌△cge (a.s.a)

∴ad=cg(全等三角形對應邊相等)

∵d為ab中點

∴ad=bd

∴bd=cg

又∵bd∥cg

∴bcgd是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)∴dg∥bc且dg=bc

∴de=dg/2=bc/2

∴三角形的中位線定理成立.

方法二:相似法:

∵d是ab中點

∴ad:ab=1:2

∵e是ac中點

∴ae:ac=1:2

又∵∠a=∠a

∴△ade∽△abc

∴ad:ab=ae:ac=de:bc=1:2∠ade=∠b,∠aed=∠c

∴bc=2de,bc∥de

方法三:座標法:

設三角形三點分別為(x1,y1),(x2,y2),(x3,y3)則一條邊長為 :根號(x2-x1)^2+(y2-y1)^2另兩邊中點為((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)

這兩中點距離為:根號((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2

最後化簡時將x3,y3消掉正好中位線長為其對應邊長的一半方法4:

延長de到點g,使eg=de,連線cg

∵點e是ac中點

∴ae=ce

∵ae=ce、∠aed=∠ceg、de=ge∴△ade≌△cge (s.a.s)

∴ad=cg、∠g=∠ade

∵d為ab中點

∴ad=bd

∴bd=cg

∵點d在邊ab上

∴db∥cg

∴bcgd是平行四邊形

∴de=dg/2=bc/2

∴三角形的中位線定理成立[2]

方法五:向量de=da+ae=(ba+ac)/2=bc/2[3]∴de//bc且de=bc/2

三角形中位線定理的證明的幾種方法

3樓:嶺下人民

1.欲證de=bc/2這種線段的倍半問題,往往可以將短的線段放大,轉化為證明兩回線段相等,此

答題可將線段de延長一倍至f,再連fc,把問題轉化為證明四邊形dfcb為平行四邊形。證明:延長de到f使de=ef,聯結fc ∵de是△abc的中位線 ∴ae=ec ad=db ∵∠aed=∠cef ∴△ade≌△fec ∴ad=fc ∴db=fc ∴∠a=∠ecf ∵cf‖ab ∴dbcf是平行四邊形 ∴df=bc ∴de‖bc 2.

八年級下冊第四章已學習過相似圖形,也可以利用相似三角形的知識來解決。 ∵ad=(1/2)ab,ae=(1/2)ac,∠dae=∠bac, ∴△ade∽△abc. ∴∠ade=∠abc,de:

bc=ad:ab=1:2.

∴de‖bc,de=(1/2)bc. 3.也可以用截長補短的方法構造全等三角形,再證出平行四邊形,得出結論。

三角形中位線定理的證明的幾種方法

4樓:巨樹花池嫻

1.欲證de=bc/2這種線

段的倍半問題,往往可以將短的線段放大,轉化為證明兩線段相等,此題可將線段de延長一倍至f,再連fc,把問題轉化為證明四邊形dfcb為平行四邊形。證明:延長de到f使de=ef,聯結fc

∵de是△abc的中位線

5樓:常秀愛六棋

已知△abc中,d,e分別是ab,ac兩邊中點。

求證de平行且等於1/2bc

法一:過c作ab的平行線交de的延長線於f點。

∵cf∥ad

∴∠a=acf

∵ae=ce、∠aed=∠cef

∴△ade≌△cfe

∴de=ef=df/2、ad=cf

∵ad=bd

∴bd=cf

∴bcfd是平行四邊形

∴df∥bc且df=bc

∴de=bc/2

∴三角形的中位線定理成立.

法二:∵d,e分別是ab,ac兩邊中點

∴ad=ab/2

ae=ac/2

∴ad/ae=ab/ac

又∵∠a=∠a

∴△ade∽△abc

∴de/bc=ad/ab=1/2

∴∠ade=∠abc

∴df∥bc且de=bc/2

三角形中位線定理的證明的幾種方法

6樓:幸運的活雷鋒

三角形中位bai線定理:三du角形的中位線平行於第三zhi邊,並且等於第三邊的一半。dao

已知△abc中,內d,e分別是容ab,ac兩邊中點。求證de平行且等於bc/2。

法一:過c作ab的平行線交de的延長線於f點。

∵cf∥ad

∴∠a=∠acf

∵ae=ce、∠aed=∠cef

∴△ade≌△cfe

∴ad=cf

∵d為ab中點

∴ad=bd

∴bd=cf

∴bcfd是平行四邊形

∴df∥bc且df=bc

∴de=bc/2

∴三角形的中位線定理成立.

法二:利用相似證

∵d,e分別是ab,ac兩邊中點

∴ad=ab/2 ae=ac/2

∴ad/ae=ab/ac

又∵∠a=∠a

∴△ade∽△abc

∴de/bc=ad/ab=1/2

∴∠ade=∠abc

∴df∥bc且de=bc/2

法三:座標法:

設三角形三點分別為(x1,y1),(x2,y2),(x3,y3)

則一條邊長為 :根號(x2-x1)^2+(y2-y1)^2

另兩邊中點為((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)

這兩中點距離為:根號((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2

最後化簡時將x3,y3消掉正好中位線長為其對應邊長的一半

7樓:核桃

.欲證de=bc/2這種線段的倍半問題,往往可以將短的線段放大,轉化為證明兩線段相等

專,此題

屬可將線段de延長一倍至f,再連fc,把問題轉化為證明四邊形dfcb為平行四邊形。證明:延長de到f使de=ef,聯結fc ∵de是△abc的中位線 ∴ae=ec ad=db ∵∠aed=∠cef ∴△ade≌△fec ∴ad=fc ∴db=fc ∴∠a=∠ecf ∵cf‖ab ∴dbcf是平行四邊形

三角形中位線的證明方法

8樓:張簡芮美柯劍

設三角形是abc,ab、bc邊上的中點

分別是d、e。

過點d作de'平行於bc交ac於e',則由平行線平分線段定理,有ad:db=ae':e'c,由於d是ab的中點,所以ae'=e'c,即e'與e重合,從而de平行bc,且de等於bc的一半。

9樓:邗友靈暢桐

連結三角形兩邊中點的線段叫做三角形的中位線.三角形中位線的性質定理是:

三角形的中位線平行於三角形的第三邊,且等於第三邊的一半.通過平移,構造平行四邊形

根據判定「一組對邊平行且相等的四邊形是平行四邊形」,平移線段就可以得到一個平行四邊形

在證明三角形中位線定理時,我們可以運用平移的方法.如圖,設d、e分別是△abc邊ab、ac的中點,過點c作cf‖ad交de延長線於點f.

∵∠1=∠2,ae=ce,∠a=∠3,

∴△aed≌△cef.∴ad=cf.

又ad=bd,.

故四邊形bcfd是平行四邊形.

10樓:欽冬靈興歆

簡捷的方法證明

(l)延長de到f,使

,連結cf,由

可得ad

fc.(2)延長de到f,使

,利用對角線互相平分的四邊形是平行四邊形,可得adfc.(3)過點c作

,與de延長線交於f,通過證

可得ad

fc.上面通過三種不同方法得出ad

fc,再由

得bdfc,所以四邊形dbcf是平行四邊形,dfbc,又因de

,所以de.

高分~~~求三角形中位線的24種證明方法

11樓:穎兒

已經盡力了,實在想不到那麼多

不過也還不錯吧

還有,圖貼不上來,所以只有一張

1.向量法:

已知:三角形abc,ab,bc邊的中點分別為ef求證:ef=0.5bc,ef平行bc

證明:(以下未加說明都是向量)

ef=af-ae=0.5ac-0.5ab=0.5bc∴ef、bc共線,|ef|=0.5|bc|∴(線段)ef=0.5bc,ef平行bc

2.同一法:

(1)三角形中位線定理與平行線等分線段定理的推論1是互為逆命題的關係.

(2)線段的中點是唯一的,過兩點的直線也是唯一的,3.通過旋轉圖形構造基本圖形——平行四邊形4.過三個頂點分別向中位線作垂線

5.轉化為證明四邊形為平行四邊形的問題

證明:延長de到f使de=ef,聯結fc

∵de是△abc的中位線

∴ae=ec ad=db

∵∠aed=∠cef

∴△ade≌△fec

∴ad=fc

∴db=fc

∴∠a=∠ecf

∵cf‖ab

∴dbcf是平行四邊形

∴df=bc

∴de‖bc

6.相似三角形:

∵ad=(1/2)ab,ae=(1/2)ac,∠dae=∠bac,∴△ade∽△abc.

∴∠ade=∠abc,de:bc=ad:ab=1:2.

∴de‖bc,de=(1/2)bc.

7.截長補短的方法構造全等三角形,再證出平行四邊形,得出結論8.座標法:

設三角形三點分別為(x1,y1),(x2,y2),(x3,y3)則一條邊長為 :根號(x2-x1)^2+(y2-y1)^2另兩邊中點為((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)

這兩中點距離為:根號((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2

最後化簡時將x3,y3削掉正好中位線長為其對應邊長的一半

三角形中位線定理的證明的幾種方法

1.欲證de bc 2這種線段 抄的倍半問題bai,往往可以將短的線段放大,轉化為du證明兩線段zhi 相等,dao此題可將線段de延長一倍至f,再連fc,把問題轉化為證明四邊形dfcb為平行四邊形。證明 延長de到f使de ef,聯結fc de是 abc的中位線 ae ec ad db aed c...

證明三角形內角和定理時,可以把三角形的角「湊」到BC邊上的一點P,(如圖

湊到邊上與內部或外部,本質是一樣的,因為總是讓三個角在一起構成一個平角。1 過a作mn bc 則 mab b,nac c 即 bac abc acb a mab nac因mn是過a的直線,所以 a mab nac 180 所以 bac abc acb 180 方法 2 延長bc至d,過c作ce ab...

相似三角形所有定理相似三角形所有定理

對應角相等,對應邊成比例的兩個三角形叫做相似三角形。similar s 互為相似形的三角形叫做相似三角形。例如右圖中,若b c bc,那麼角b 角b 角bac 角c a b 是對頂角,那麼我們就說 abc ab c 相似三角形 判定方法 證兩個相似 三角形 應該把表示對應頂點的字母寫在對應的位置上。...