1樓:匿名使用者
所謂趨向於
襲0+ 是指x從數軸的右邊bai趨向於
du0 也就是說x是大於0的 無限逼zhi近0lime^(1/x)
當x趨向於dao0+時 1/x趨向於正無窮 所以e(1/x)趨向於正無窮
如果是趨向於0- 則答案不一樣了 1/x趨向於負無窮 e^(1/x)的極限是0
求高數解答:為什麼lim e^[1/(x-1)] 的左右極限是0和+∞
2樓:匿名使用者
上式 1/(x-1) → -∞, 故極限是 0,
下式 1/(x-1) → +∞, 故極限是 +∞。
limx→0 e^(1/x)為什麼0^+是趨於正無窮,0^-是趨於0
3樓:假面
具體回答如圖:
抄如果數列收斂,則其一定是有界的。即對於一切n(n=1,2......),總可以找到一個正數m,使|xn|≤m。
為什麼lim (x趨於0)(1+x)^(1/x)等於e?
4樓:116貝貝愛
因為x趨於0,所以lim[(1+x)^(1/x)]=lim(1+x)^∞=e
解題過程如下:
原式 = lim (e^(ln(1+x)/x) -e)/x
=lim e(e^(ln(1+x)/x - 1) -1 ) /x
=lim e(ln(1+x)/x -1)/x
=e lim (ln(1+x)-x)/x2
=e lim (1/(1+x)-1) / 2x
=e lim -x/(2x(1+x))
=lim[(1+x)^(1/x)]
=lim(1+x)^∞
=e求函式極限的方法:
利用函式連續性,直接將趨向值帶入函式自變數中,此時要要求分母不能為0。
當分母等於零時,就不能將趨向值直接代入分母,因式分解,通過約分使分母不會為零。若分母出現根號,可以配一個因子使根號去除。
如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)。
採用洛必達法則求極限,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。符合形式的分式的極限等於分式的分子分母同時求導。
5樓:薔祀
解:本題利用了洛必達法則進行求解。
首先需要設y=(1+1/x)^x,
兩邊同時取自然對數得 lny=xln(1+1/x)=[ln(1+1/x)]/(1/x)
由洛必達法則lny=lim【x→∞】[ln(1+1/x)]/(1/x)=[1/(1+1/x)] (1/x) '/(1/x)'=1/(1+1/x)=1
所以y=e【x→∞】 即lim(x→∞) (1+1/x)^x=e。
擴充套件資料:
洛必達法則的應用條件:
一是分子分母的極限是否都等於零(或者無窮大);
二是分子分母在限定的區域內是否分別可導。
如果這兩個條件都滿足,接著求導並判斷求導之後的極限是否存在:如果存在,直接得到答案;如果不存在,則說明此種未定式不可用洛必達法則來解決;如果不確定,即結果仍然為未定式,再在驗證的基礎上繼續使用洛必達法則。
6樓:北極雪
這個問題的證明比較複雜,需要用到高等數學,符號較複雜,難以寫出當x趨於正無窮大或負無窮大時,「1加x分之一的x次方」這個函式表示式(1+1/x)^x的極限就等於e,用公式表示,即:
lim(1+1/x)^x=e
(x趨於±∞)
實際上e就是尤拉通過這個極限而發現的,它是個無限不迴圈小數,其值等於2.71828......。以e為底的對數叫做自然對數,用符號「ln」表示。
7樓:呦呵你少衝
最簡單的就是可以用複合函式解決:
令y=1/x,則x趨近於0則有y趨近於無窮=> 原式 = lim(y趨於無窮) (1+1/y) ^ y=e
8樓:匿名使用者
如果需要證明的話,有一個簡單方法:
1. (1-1/x)^(-x)=1/((1-1/x)^x)
2. 為了打字方便,只看分母
,也就是(1-1/x)^x=exp(ln((1-1/x)^x)))=exp(x*ln(1-1/x))=exp((ln(1-1/x))/(1/x)),令1/x=t,也就是=exp((ln(1-t))/t) (注意括號的層數)
3. 用洛比達法則:因為分子分母在x趨向正無窮的時候的極限都為0,所以上下求導,lim ln(1-t))/t=lim(-1/(1-t))/1=-1
4. 所以回到2:lim(1-1/x)^x=lim exp(ln((1-1/x)^x)))=exp(-1)=e^-1
5. 回到1: lim(1-1/x)^(-x)=lim1/((1-1/x)^x)=1/e^-1=e
9樓:噓白
因為x趨於0,lim[(1+x)^(1/x)] 等同於 x →∞ lim(1+1/x)^x,這個式子 就e的定義
10樓:單戀著的小豬
解:設y=(1+x)^(1/x)
兩邊同時取自然對數得
lny=(1/x)ln(1+x)=ln(1+x)/x則得lny=ln(1+x)/x=1(當x趨於0時)所以lny=1=lne
即y=e
11樓:無情天魔精緻
設y=(1+1/x)^x
兩邊同時取自然對數得
lny=xln(1+1/x)=[ln(1+1/x)]/(1/x)由羅比達法則lny=lim【x→∞】[ln(1+1/x)]/(1/x)=[1/(1+1/x)] (1/x) '/(1/x)'=1/(1+1/x)=1
所以y=e【x→∞】
即lim(x→∞) (1+1/x)^x=e
12樓:
因為x趨於0,lim[(1+x)^(1/x)]=lim(1+x)^∞=e
求極限lim e^(1/x)=0 x→0-極限怎麼算來的?
13樓:開森阿七
^由於f(x) = e^(1/x)-1在x=1處連續,故有連續函式定義知道:f(x)在x=1處的極限就是f(1),計算可得f(x) = 0。
如果f(x) = e^(1/(1-x)),那麼x-->1時,左極限為0,右極限為正無窮。
其實當x趨於1時,1/(1-x)是趨於無窮的(x1時趨於正無窮),從而e^(1/(1-x))有兩種極限。
拓展資料:
高等數學求極限,求lim[1/e*(1+x)^(1/x)]^(1/x) 【x趨於0】
如題:求lim[(1/e)*(1+x)^(1/x)]^(1/x) 【x趨於0】
解答:lim[(1/e)*(1+x)^(1/x)]^(1/x)
=lim[1+((1+x)^(1/x)-e)/e]^[[e/((1+x)^(1/x)-e)]*[((1+x)^(1/x)-e)/ex ]]
=lime^((1+x)^(1/x)-e)/ex
lim((1+x)^(1/x)-e)/ex
=lim(x-(1+x)ln(1+x))/x^2
=-1/2
所以lim[(1/e)*(1+x)^(1/x)]^(1/x) 【x趨於0】=e^(-1/2)。
14樓:匿名使用者
x→0-:1/x→-∞
e^(1/x)→0(y=e^(1/x)無限接近於x軸的負半軸)
15樓:
回答你的追問,按照樓上的思路就可以了,因為(1/(x-1))從1+方向趨於1時,(1/(x-1))趨於正無窮,從1-方向趨於1時(1/(x-1))趨於負無窮,在放到e上,當(t→∞) (t= (1/(x-1)) ) e∧(t)趨於∞,而當(t→— -∞ )時,e∧(t)趨於0
高等數學 極限問題 lim(x趨近於正無窮)ln(1+e^x)-x 怎麼計算 20
16樓:小茗姐姐
=0方法如下圖所示,
請認真檢視,
祝學習愉快,
學業進步!
滿意請釆納!
17樓:王蟲胖
因為有一個ln,想到可以把e作為底數消去ln,再求其自然對數與原式相等。
為什麼當x趨近於無窮的時候,1加x分之一的x次方的極限為1?????高數 10
18樓:不是苦瓜是什麼
極限是e
x趨於無窮大時,
lim(1+1/x)∧x=e lim^xln(1+1/x)令t=1/x, t->0
=e lim^1/tln(1+t)=e^1=e極限的性質:
1、唯一性:存在即唯一
關於唯一性,需要明確x趨向於無窮,意味著x趨向於正無窮並且x趨向於負無窮;同理,x→xo,意味著x趨向於xo正且趨向於x0負。
比如:x趨向於無窮的時候,e^x的極限就不存在,因為x趨向於正無窮的時候e^x是無窮,x趨向於負無窮的時候e^x是0,根據極限存在的唯一性,所以這個極限不存在。
2、區域性有界性:存在必有界
極限存在只是函式有界的充分條件,而非必要條件,即函式有界但函式極限不一定存在。
判別有界性的方法
(1)理論法:函式在閉區間上連續,則函式必有界。
(2)計演算法:函式在開區間上連續且左右極限都存在,則函式有界。
(3)四則運演算法:有限個有界函式的和、差、積必有界。
3、區域性保號性:保持不等號的方向不變
19樓:匿名使用者
極限不為1啊,極限是e
x趨於無窮大時,
lim(1+1/x)∧x=e lim^xln(1+1/x)令t=1/x, t->0
=e lim^1/tln(1+t)=e^1=e
20樓:普海的故事
x趨於無窮大時
lim (1+x)的x分之一次方
=lim e^[1/x*ln(x+1)]
=e^0=1
21樓:好學的祥哥
x趨於無窮時x分之一無限接近於0
22樓:匿名使用者
為什麼啊哦婆婆1dj老婆老婆咯破物流資訊都沒有了嗎那天晚上我買了個手機殼了親親抱抱舉高高?
23樓:風傾
[最佳答案]極限是e x趨於無窮大時, lim(1+1/x)∧x=e lim^xln(1+1/x) 令t=1/x, t->0 =e lim^1/tln(1+t)=e^1=e 擴充套件資料極限的...
高等數學,x0求lime1x
你這是冪函式運算都忘記了呀 e ln 1 x x e e ln 1 x x 1 你這 x x 1 怎麼來的?高等數學求極限,求lim 1 e 1 x 1 x 1 x x趨於0 lim x bai0 1 e 1 x 1 x 1 x lim x 0 e ln e lim x 0 1 ln 1 x x x...
高等數學x趨於0時,ln1xx2的極限怎麼求
用洛必達法則 是 1 1 x 2x 1 2x 2x2 但是這兩個結果一樣 因為都是分母趨於0 極限不存在 因為ln 1 x x 所以ln 1 x 是比x2低階的無窮小 所以最終結果都是1 0即 1 x和1 2x都是一樣的,因為x趨近0,所以極限都是不存在的 高等數學 極限問題 lim x趨近於正無窮...
為什麼要學習高等數學
因為這是一門公共課,公共課屬於大學必修課程,所以就是基本知識分子都要學的科目,大學是按學分制來修的,不學你就沒有學分,所有與理工學科相關的專業都得學好這門課,即使是文科專業,這門課在大學裡也是必考,當然每年通過率也是有一定數目的,即使一節不落的上課,通過率都不是百分之百,每年都會有一定的掛科率,當然...