fx的導數無定義點是什麼意思他可能存在極值點麼無定

2021-05-18 05:42:16 字數 3114 閱讀 8601

1樓:張小順

無定義就是那一點不存在,比如說fx=1/x,分母不等於0,所以fx在x=0出無定義,再比如fx=根號x,則fx在(-∞,0)無定義。

為什麼導數不存在的點也有可能是極值點?怎麼判定他是不可導點

2樓:不是苦瓜是什麼

導數不存在函式值可以存在,在這點兩側函式的單調性如果改變就是極值點不可導點有幾種情況,左右極限存在卻不相等;導函式分母為0典型的例子是y=|x|

它在x=0處是不可導點

但在x=0處取的極小值

求函式f'(x)的極值:

1、找到等式f'(x)=0的根

2、在等式的左右檢查f'(x)值的符號。如果為負數,則f(x)在這個根得到最大值;如果為正數則f(x)在這個根得到最小值。

3、判斷f'(x)無意義的點。首先可以找到f'(x)=0的根和f'(x)的無意義點。這些點被稱為極點,然後根據定義來判斷。

3樓:是你找到了我

因為極值點只關心f(x)在區域內的區域性函式值,不關心是否可導。因此函式f(x)在極值點x0處可能不可導,如

在x=0處不可導。

如果函式在某點的左右導數不相等,則函式在這點就是不可導點。

極值點出現在函式的駐點(導數為0的點)或不可導點處(導函式不存在,也可以取得極值,此時駐點不存在)。可導函式f(x)的極值點必定是它的駐點。但是反過來,函式的駐點卻不一定是極值點。

4樓:匿名使用者

比如說兩條線段組成的折線,先上後下,則最高點就是極值點,但那點不可導。

不可導的點很容易判斷,要麼是那一點求導後取不到值如 lnx求導後在x=0上取不到

要麼就是分段函式中某個點向左趨近的的導數不等於向右趨近的導數。

5樓:宇文仙

典型的例子是y=|x|

它在x=0處是不可導點

但在x=0處取的極小值

6樓:任重道遠

極值是說在一個鄰域內的區域性最大值(或者是區域性最小值),因此,即使導函式不存在,但只要它比它周圍都大(小),它就是極值點;另外,函式不連續也是有可能形成極值點的。

判斷一個點可不可導,可以嚴格按照定義去看極限是否存在,不可導的點往往是特殊的點,如分母為零,或不連續點。

極值點導數為0,導數為0的不一定是極值點是什麼意思?

7樓:demon陌

對於可導函式(影象上各點切線斜率存在),影象是光滑的,極值點切線必是水平的,即極值點切線斜率為0,極值點導數為0。

在導數為0的點的兩側若函式單調性一致,則此點不是極值點,如y=x^3在x=0處導數為0,但在原點兩側函式都是單調遞增,x=0不是極值點。

若f(a)是函式f(x)的極大值或極小值,則a為函式f(x)的極值點,極大值點與極小值點統稱為極值點。極值點是函式影象的某段子區間內上極大值或者極小值點的橫座標。極值點出現在函式的駐點(導數為0的點)或不可導點處(導函式不存在,也可以取得極值,此時駐點不存在)。

8樓:關鍵他是我孫子

因為極值點的判斷需要滿足兩個條件:

1、極值點不但導數為0

2、極值點的左右的導數的符號一定相反

所以對於極值點而言,極值點的導數不一定是0,可能是不可導點比方說f(x)=|x|,這個函式,x=0是極小值點,但是這個函式在x=0點處不可導,極小值點處導數不是0

如果某點的導數為0,但該點的左右導數符號相同,那麼該點不是極值點,可能的情況如下:

一種是像 y=x平方,這個函式在x=0的樣子,這種是極值點另一種是y=x立方,這個函式在x=0的樣子,這種叫做拐點

9樓:吉祿學閣

其實就是充分條件和必要條件問題。

本題是充分條件,從條件到結論正向推理可以,但反過來推不正確。

10樓:boy我最靚

極值點的導數是0,但是導數為零的不一定是極值點,意思就是導數為0的,有可能是極值點,有可能不是極值點,要根據具體的問題判斷。

11樓:唐衛公

極值點 -> 導數為0

從左到右一定成立,從右到左不一定(如y = x^3, x = 0時,導數y' = 3x^2 = 0, 但(0,0)不是極值點)

函式在某區間上恆單調則在該區間上無極值點。 極值點肯定是出現在先增後減或先減後增時。

多找些例子,並仔細對比影象就容易了。

12樓:匿名使用者

就像導數魏w型曲線 兩邊無限 但導數為零時只有中間三個極值 並不是最值

為什麼說不可導點,也是極值點?什麼叫不可導點?為什麼不可導點,不可求導?

13樓:墨汁諾

因為這點不bai

在定義域上。既然du這點zhi

不在定義域上,那麼這點dao就不版可導,既然不可導權,就叫做不可導點,既然是不可導點,自然不可求導。

例如:f(x)=x^2,x≠0這個函式在點(0,0),就不可導,即f'(0)=lim[(f(x)-f(0))/(x-0)],x-0→0,因為定義域上沒有x=0這點,則該式子沒有意義,但是極限值還是存在的,為0,即limf(0)=0,x→0,就是說,x不能為0,但可以無限接近0,對應的f(x)也是不能為0,但是也可以無限接近0。

14樓:匿名使用者

什麼叫極bai值點?在一點du的去心領域裡zhif(x0)<(或>)f(x)。導數為0的點又dao叫駐點。考察極值點就專要考察1駐點,2不可導

屬的點。不可導的點可能存在極值。不可導的點就是導數左右極限不存在或不相等的點。比如y=|x|,在x=0的點不可導,但存在極值。

15樓:匿名使用者

因為這點不在定bai義域上。既然du這點不在定義域上zhi,那麼這點就dao不可導

內,既然不可導,就容叫做不可導點,既然是不可導點,自然不可求導。

例如f(x)=x^2,x≠0,那麼,這個函式在點(0,0),就不可導,即f'(0)=lim[(f(x)-f(0))/(x-0)],x-0→0,因為定義域上沒有x=0這點,則該式子沒有意義,但是極限值還是存在的,為0,即limf(0)=0,x→0,就是說,x不能為0,但可以無限接近0,對應的f(x)也是不能為0,但是也可以無限接近0。

定義是什麼意思,「KYT」是什麼意思?它的定義是什麼?

定義原指對事物做出的明確價值描述。現代定義 對於一種事物的本質特徵或一個概念的內涵和外延的確切而簡要的說明 或是透過列出一個事件或者一個物件的基本屬性來描述或規範一個詞或一個概念的意義。被定義的事件或者物件叫做被定義項。一般地,能清楚的規定某一名稱或術語的概念叫做該名稱或術語的定義。對於一種事物的本...

數學的定義是什麼數學定義是什麼意思

定義1 還是一百多年前,恩格斯給數學下的定義是 研究客觀世界的數量關係和空間形式的科學 空間形式就是指的幾何學 源自 高師幾何教學改革的設想 楚雄師專學報 2001年 陳萍 文章摘要 本文在反思師專幾何教學現狀的基礎上 提出改革幾何教學的一些建議 定義2 數學定義是對數學發展的概括和總結.必然具有其...

導數等於0是什麼意義函式fx的導數等於0的意義是什麼?

表明該函式可能存在極值點。一階導數等於0只是有極值的必要條件,不是充分條件,也就是說 有極值的地方,其切線的斜率一定為0 切線斜率為0的地方,不一定是極值點.例如,y x 3,y 3x 2,當x 0時,y 0,但x 0並不是極值點。所以,在一階導數等於0的地方,還必須計算二階導數,才能作出充分的判斷...