利用取對數的方法求冪指函式的極限

2021-03-08 00:54:24 字數 2276 閱讀 3042

1樓:趙磚

lim(x->0)[(e^x+x)^(1/x)]=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)

=e^[(1+1)/(1+0)]

=e^2

lim(x->0)

=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)

=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}=e^[ln│abc│/3]

=(abc)^(1/3).

2樓:匿名使用者

^因為lim ln(e^x+x)^(1/x)=limln(e^x+x)/x ,

limln( e^x+x)~ln(1+x+x)=limln(1+2x)=2x,

則limln(e^x+x)^(1/x)=2,則原式子=e^2

2.因為 ln(sin1/x+cos1/x)^(x)=ln(sin1/x+cos1/x)/(1/x)

x →∞, 則1/x→∞

則limln(sin1/x+cos1/x)=limln(sin1/x+1)=sin1/x

limln(sin1/x+cos1/x)^(x)=limsin1/x/(1/x)=1

則原式子=e

3, limln(cos2x)^(3/x^2)=lim3ln(1-2sin^2x)/x^2=lim3(-2sin^2x)/x^2

=-6lim(sinx)^2/x^2

=-6則原式子=e^(-6)

怎麼利用取對數的方法求下列冪指函式的極限?

3樓:匿名使用者

^解:lim(x->0)[(e^x+x)^(1/x)]=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)=e^[(1+1)/(1+0)]

=e^2

lim(x->0)

=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}=e^[ln│abc│/3]

=(abc)^(1/3)。

4樓:夏侯連枝實春

^^3]^(1/x]}

(應用對數性質取對數)

=e^(應用對數性質取對數)

=e^(0/0型極限;(1+0)]

=e^2

lim(x->0)[(a^xln│a│+b^xln│b│+c^xln│c│)/0)

(0/0型極限;0)[ln(e^x+x)/x]}(應用初等函式的連續性)

=e^=e^[ln│abc│/x]}

(應用初等函式的連續性)

=e^=lim(x->3]

=(abc)^(1/0){e^[(ln(a^x+b^x+c^x)-ln3)/

5樓:匿名使用者

^lim(e^x+x)^(1/x) lim [(a^x+b^x+c^x)/3]^(1/x)=lime ^xin(1+1/x^2)=lime^lim1/x=1

in(1+1/x^2)~1/x^2

冪指函式

既像冪函式,又像指數函式,二者的特點兼而有之。

作為冪函式,其冪指數確定不變,而冪底數為自變數;相反地,指數函式卻是底數確定不變,而指數為自變數。

冪指函式就是冪底數和冪指數同時都為自變數的函式。這種函式的推廣,就是廣義冪指函式。

利用取對數的方法求下列冪指函式的極限lim(e^x+x)^(1/x) lim [(a^x+b^x+c^x)/3]^(1/x)

6樓:匿名使用者

^解:lim(x->0)[(e^x+x)^(1/x)]=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)=e^[(1+1)/(1+0)]

=e^2

lim(x->0)

=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}=e^[ln│abc│/3]

=(abc)^(1/3)。

7樓:匿名使用者

高數學的時候就難,其實考就不怎麼難,平時肯看下書就一定及格。

函式怎麼求導?步驟是怎樣的,冪指函式如何求導

分數的求導方法 求導後的式子 導函式的分母是原函式分母的平方,導函式的分子是 分子求導 分母 分母求導 分子 比如y 1 x求導y 1 x 2 y 1 x 1 求導y 1 x 1 2y 2x x 1 求導y 2x x 1 x 1 2x x 1 2 2 x 1 2 1 先要了解幾個基本初等函式的求導。...

關於複合函式求值域的方法像有對數函式

因為要使函式值域為r,則真數必須能取一切正實數。而真數是一個二次函式。令t ax 2 2x 1.因此,要讓內t 0即t取一切正容數,即二次函式的值域一定為r 所以二次函式開口一定向上。如果 0,則t m m為一個正數 這樣t的值取不完所以正數,故函式的值域是 lgm,不是r了。如果 0,則t m m...

函式求導時,用對數恆等式和兩邊取對數算出的結果不一樣嗎

函式的求導結果是一致的,無論採取哪種方式,都是一樣的結果。在對一個恆等式,兩邊取對數求導和兩邊取以e為底的指數求導,為什麼結果不一樣 你的具體式子是什麼?這應該是不會出現的 可能是你在轉換的過程中 沒有注意相關的轉換 比如y f x 取對數就是lny lnf x 求導得到y y f x f x 取指...