線性代數中向量空間的問題,這裡的行列式得2怎麼說是線性無關

2021-04-17 18:54:09 字數 4690 閱讀 8336

1樓:匿名使用者

三維空間,只要三個向量構成的行列式不為0,這三個向量就線性無關。

線性代數 向量組線性相關和線性無關的問題

2樓:匿名使用者

【知識點】

若矩陣a的特徵值為λ1,λ2,...,λn,那麼|a|=λ1·λ2·...·λn

【解答】

|a|=1×2×...×n= n!

設a的特徵值為λ,對於的特徵向量為α。

則 aα = λα

那麼 (a²-a)α = a²α - aα = λ²α - λα = (λ²-λ)α

所以a²-a的特徵值為 λ²-λ,對應的特徵向量為αa²-a的特徵值為 0 ,2,6,...,n²-n【評註】

對於a的多項式,其特徵值為對應的特徵多項式。

線性代數包括行列式、矩陣、線性方程組、向量空間與線性變換、特徵值和特徵向量、矩陣的對角化,二次型及應用問題等內容。

3樓:匿名使用者

假設給出了a1...ar個向量,向量組a=(a1,a2,...ar),要求

判斷線性相關性

(1)那麼根絕定義來判斷的話就是看方程

k1a1+k2a2...+krar=0的解集的數量。

加入只有k1=k2=...=kr=0這一種解,那麼向量組a1...ar就是線性無關。

假如還有別的解,那麼向量組就是線性相關了。

(2)根據秩來判斷。

假如r(a1,a2...ar)=r,那麼就是線性無關。

假如r(a1,a2...ar)

(3)由2推廣開,有此方法。

就是求行列式a的值。

當a的行列式不等於0時(即秩為r),向量組線性無關。

當a行列式=0時,向量組線性相關。

一般來說,做這類題常用的就是這幾種方法

4樓:嚯

向量組線性相關:就是向量組裡面的只要有一個向量能由其餘的向量線性表示

例如:含有0的向量組必線性相關 因為向量0可以由向量組裡其餘任意數量的向量表示(只要向量的係數k均為0就行)

5樓:明燭

理論聯絡實際,從相關具體題目出發,去理解領悟。往往是會做一類題是理解相關定義定理的基礎,而不是先苦於理解再做題。即是從實踐到認識再從認識到實踐的過程,這一過程會加深對知識的理解。

因此,我們在做一道題時應多分析勤總結基本定義定理的運用。希望對你有些幫助,至少我也是這樣學習線性代數的。

線性代數,第二問解答中,為什麼行列式不等於0就一定線性無關???行列式等於0不是也可以線性無關麼

6樓:小潘和小冠和小英是好朋友

你好。由行列式的計算可知,當一個矩陣內的向量組都是線性無關,則說明該矩陣是滿秩矩陣。若不是滿秩矩陣,則會出現某一行全為0,自然矩陣的行列式一定等於零。

7樓:電燈劍客

當x是方陣的時候

det(x)=0 <=> x可逆 <=> xt=0只有零解t=0 <=> x的列線性無關

全都是些基礎結論,你應該好好看教材,這種教輔沒什麼好看的

線性代數,如圖證明線性無關,最後幾行寫,行列式得2。不得0,就只有0解,是什麼意思??

8樓:匿名使用者

係數行列式不為 0, 則有唯一解,

方程組又是齊次方程,根據克萊姆法則,只有 零解。

線性代數,對於矩陣a其行列式值為0,為什麼它的列向量組線性相關?

9樓:匿名使用者

對於n階a行列式等於零,所以矩陣a的n階子式為零,即r(a)量組線性相關的充要條件是其組成的矩陣的秩小於向量個數,所以a的列向量組線性相關。公式證明過程如下:

ax=0有非零解,存在不完全等於0的x1, x2, ......, xn,使得 x1a1+x2a2+......+xnan=0,a的列向量,所以a1, a2, ......

,an 線性相關。

10樓:喵喵喵

ax=0有非零解,存在不完全等於0的x1, x2, ......, xn,使得 x1a1+x2a2+......+xnan=0,a的列向量,所以a1, a2, ......

,an 線性相關。

矩陣的秩和其列向量空間或者行向量空間的維數是一樣的,矩陣a其行列式為0,說明這個矩陣是個方陣,我們設它為n×n的方陣,矩陣的秩是指最大規模非零子式的階數,它的行列式是0。

說明它的秩只能是≤n-1,而列向量構成的向量空間的維數也只能是≤n-1,有n個列向量,如果線性無關的話,它們就能構成向量空間的一組基,那維數就是n,矛盾,所以一定線性相關。

擴充套件資料

矩陣行列式定理:

1、定理1 設a為一n×n矩陣,則det(at)=det(a) 。

2、設a為一n×n三角形矩陣。則a的行列式等於a的對角元素的乘積。

根據定理1,只需證明結論對下三角形矩陣成立。利用餘子式和對n的歸納法,容易證明這個結論。

3、令a為n×n矩陣。

(i) 若a有一行或一列包含的元素全為零,則det(a)=0。

(ii) 若a有兩行或兩列相等,則det(a)=0。

這些結論容易利用餘子式加以證明。

11樓:匿名使用者

n階a行列式等於零,也就是a的n階子式為零,所以r(a)

而一個列向量組線性相關的充要條件是它們拼成的矩陣的秩小於向量個數。

所以a的列向量組線性相關。

經濟數學團隊幫你解答,請及**價。謝謝!

12樓:這一邊或那一邊

行列式為零說明它對應的齊次線性方程組有非零解,你將其寫開就知道了

什麼叫線性無關?線性無關有什麼性質

13樓:匿名使用者

例如在三維歐幾里得空間r的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。

性質:1、向量a1,a2, ···,an(n≧2)線性相關的充要條件是這n個向量中的一個為其餘(n-1)個向量的線性組合。

2、一個向量線性相關的充分條件是它是一個零向量。

3、兩個向量a、b共線的充要條件是a、b線性相關。

4、三個向量a、b、c共面的充要條件是a、b、c線性相關。

5、n+1個n維向量總是線性相關。(個數大於維數必相關)

擴充套件資料:

注意事項:

1、對於任一向量組而言,,不是線性無關的就是線性相關的。

2、向量組只包含一個向量a時,a為0向量,則說a線性相關; 若a≠0, 則說a線性無關。

3、包含零向量的任何向量組是線性相關的。

4、含有相同向量的向量組必線性相關。

5、增加向量的個數,不改變向量的相關性。(注意,原本的向量組是線性相關的)(區域性相關,整體相關)

6、減少向量的個數,不改變向量的無關性。(注意,原本的向量組是線性無關的)(整體無關,區域性無關)

7、一個向量組線性無關,則在相同位置處都增加一個分量後得到的新向量組仍線性無關。(無關組的加長組仍無關)

8、一個向量組線性相關,則在相同位置處都去掉一個分量後得到的新向量組仍線性相關。(相關組的縮短組仍相關)

9、若向量組所包含向量個數等於分量個數時,判定向量組是否線性相關即是判定這些向量為列組成的行列式是否為零。若行列式為零,則向量組線性相關;否則是線性無關的。

14樓:匿名使用者

線性無抄

關,就是在一組襲資料中沒有一個量可以被其餘量表示。**性代數裡,向量空間的一組元素稱為線性無關(或稱線性無關),如果其中沒有向量可表示成有限個其他向量的線性組合,反之稱為線性相關。

用式子表示,如果一個量(通常是向量、矩陣或者其它形式)可以表達為其它已知量的線性組合的話,可以寫成x=a1x1+a2x2+a3x3+……+anxn的話,那這個量就與其它已知量之間就是線性相關的,反之就是線性無關的。例如在三維歐幾里得空間r3的三個向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)線性無關。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)線性相關,因為第三個是前兩個的和。

15樓:1路邊的星星

我是這樣理解的:比如說copy,三維直角座標系中的bai

基底i,j,k(夾du角互為90°),假設zhi向量m=xi+yj+zk,m可以等於任意dao

值,也就是該空間的任意向量,即i,j,k可以表示空間的所有向量,這裡的i,j,k就是線性無關。

相應的,任意三個向量a,b,c(全不等於0)不共面即可表示出三維空間的所有向量,稱a,b,c線性無關;

如果向量a,b,c共面,則不能表示出整個空間,稱a,b,c線性相關。

同樣的,在二維平面(平面直角座標系)中情況類似,向量a和b共線,即a=mb也就是a+nb=0(m=-n∈r)(三維以及n維也可以這樣表示出來),這裡a和b就是線性相關;否則就是線性無關。

16樓:匿名使用者

線性無關就是一個向量組(x1,x2,...xn),如滿足a1x1+a2x2+...+anxn=0,只有當a1=a2=...=an=0時才成立!

17樓:雲外的一團雲

線性相關如果你懂了,那麼線性無關就是它的反義

線性代數中向量的線性相關性問題,線性代數向量組的線性相關性問題

線性代數中的線性相關是指 如果對於向量 1,2,n,存在一組不全為0的實數內k1 k2 kn,使得 容k1 1 k2 2 kn n 0成立,那麼就說 1,2,n線性相關 線性代數中的線性無關是指 如果對於向量 1,2,n,只有當k1 k2 kn 0時,才能使k1 1 k2 2 kn n 0成立,那麼...

線性代數中向量和矩陣問題,向量和矩陣是什麼關係啊

所謂矩陣乘法滿bai足結合律a du b c a b c,前zhi提是a b c之間dao可以做乘法才行版 但向量作權為矩陣時,只要向量的分量不是一個,按照矩陣乘法規則,兩個向量之間是沒法做乘法的,當然就更談不上滿足運算律了。你說的a b c a b c是不滿足結合律 不是交換律 雖然向量可以看成矩...

線性代數特徵值和特徵向量線性代數中怎樣求特徵值和特徵向量?

t為一個n維列向量乘一個n維行向量,得到一個n維方陣。這個方陣的每兩行肯定都是線性相關的,因為都是列向量中的一個元素,依次乘行向量中的元素,作為對應位置的值。或者可以算一下,如圖所示,得到的n維矩陣對應的行列式,每行提出對應的公因子,得到一個每行元素都相同的行列式,即秩為1.當然也可以這麼想,r a...