行列式的空間定向,行列式的幾何意義

2021-04-19 02:01:59 字數 2333 閱讀 6162

1樓:東林加油

以上二維和三維行抄列式的例子中,行列式被解釋為向量形成的圖形的面積或體積。面積或體積的定義是恆正的,而行列式是有正有負的,因此需要引入有向面積和有向體積的概念。負的面積或體積在物理學中可能難以理解,但在數學中,它們和有向角的概念類似,都是對空間鏡面對稱特性的一種刻畫。

如果行列式表示的是線性變換對體積的影響,那麼行列式的正負就表示了空間的定向。

如上圖中,左邊的黃色骰子(可以看成有單位的有向體積的物體)在經過了線性變換後變成中間綠色的平行六面體,這時行列式為正,兩者是同定向的,可以通過旋轉和拉伸從一個變成另一個。而骰子和右邊的紅色平行六面體之間也是通過線性變換得到的,但是無論怎樣旋轉和拉伸,都無法使一個變成另一個,一定要通過鏡面反射才行。這時兩者之間的線性變換的行列式是負的。

可以看出,線性變換可以分為兩類,一類對應著正的行列式,保持空間的定向不變,另一類對應負的行列式,顛倒空間的定向。

行列式的幾何意義

2樓:赤果果丶

行列式的一個自然的源起是n維平行體的體積。行列式的定義和n維平行體的體積有著本質上的關聯。 在一個二維平面上,兩個向量x =(a, c)和x' =(b, d)的行列式是:

比如說,兩個向量x =(2, 1)和x' =(3, 4)的行列式是:

·經計算可知,當係數是實數時,行列式表示的是向量x和x'形成的平行四邊形的有向面積,並有如下性質:

·行列式為零當且僅當兩個向量共線(線性相關),這時平行四邊形退化成一條直線。

·如果以逆時針方向為正向的話,有向面積的意義是:平行四邊形面積為正當且僅當以原點為不動點將x逆時針「轉到」x'處時,掃過的地方在平行四邊形裡,否則的話面積就是負的。如右圖中,x和x'所構成的平行四邊形的面積就是正的。

·行列式是一個雙線性對映。也就是說, ,

並且 。

其幾何意義是:以同一個向量v作為一條邊的兩個平行四邊形的面積之和,等於它們各自另一邊的向量u和u'加起來後的向量:u + u'和v所構成的平行四邊形的面積,如左圖中所示。

在三維的有向空間中,三個三維向量的行列式是:

比如說,三個向量 (2, 1, 5)、(6, 0, 8)和 (3, 2, 4)的行列式是:

當係數是實數時,行列式表示x、x′和x″三個向量形成的平行六面體的有向體積,也叫做這三個向量的混合積。同樣的,可以觀察到如下性質:

·行列式為零當且僅當三個向量共線或者共面(三者線性相關),這時平行六面體退化為平面圖形,體積為零。

·三維空間中有向體積的定義要比二維空間中複雜,一般是根據右手定則來約定。比如右圖中(u,v,w)所形成的平行六面體的體積是正的,而(u,w,v)所形成的平行六面體的體積是負的。這個定義和行列式的計算並不矛盾,因為行列式中向量的座標都是在取好座標系後才決定的,而座標系的三個方向一般也是按照右手規則來設定的。

如果計算開始時座標系的定向反過來的話,有向體積的定義也要跟著反過來,這樣行列式才能代表有向體積。

·這時行列式是一個「三線性對映」,也就是說,對第一個向量有 ,對第

二、第三個向量也是如此。其幾何意義和二維時基本相同,是指當生成兩個平行六面體的每組三個向量中如果有兩個是重合的,比如分別是:(u,v,w)和(u',v,w),那麼它們的體積之總和等於將u和u'加起來後的向量u + u'和v,w所形成的平行六面體的體積,如右圖所示。

設e是一個一般的n維的有向歐幾里得空間。一個線性變換把一個向量線性地變為另一個向量。比如說,在三維空間中,向量(x,y,z)被對映到向量(x',y',z'):

其中a、b、c是係數。如右圖,正方體(可以看作原來的一組基形成的)經線性變換後可以變成一個普通的平行六面體,或變成一個平行四邊形(沒有體積)。這兩種情況表示了兩種不同的線性變換,行列式可以將其很好地分辨出來(為零或不為零)。

更詳細地說,行列式表示的是線性變換前後平行六面體的體積的變化係數。如果設左邊的正方體體積是一,那麼中間的平行六面體的(有向)體積就是線性變換的行列式的值,右邊的平行四邊形體積為零,因為線性變換的行列式為零。這裡我們混淆了線性變換的行列式和向量組的行列式,但兩者是一樣的,因為我們在對一組基作變換。

體育中定向是什麼啊?

3樓:匿名使用者

定向運動作為體育課程內容的擴充套件,把原有僅限於學校體育課程的跑、跳、投、攀爬、跨越等基本內容,擴充套件到社會,擴充套件到大自然,從而突破了體育課程長期以來形成的一種封閉的格式,這不僅符合現代學校體育課程改革的發展趨勢,增強了體育課程的實效性和趣味性,而且可以豐富和完善我國學校體育課程的體系。定向運動源自國外,近年來在國內得到迅速發展,特別是引起了廣大學生的濃厚興趣。

4樓:匿名使用者

這個我也不懂 沒聽說過啊

5樓:匿名使用者

鍛鍊身體,增強人民體質。

用行列式的定義計算這個行列式,用行列式的定義計算下列行列式

第一行取第一個元自素n,第二行取bai第三個元素2,第三行取第四個元du素3,zhi.第n 1行取第n個元素n 1 第n行取第二個元素1。dao 只有這一種取法取出的n個數之積不為0 這些數對應的排列為 134.n2 其逆序數為 t 134.n2 n 2 根據行列式的定義,行列式 1 n 2 n 用...

計算行列式計算行列式D

該行列式的值是8。d 1111 0222 r2 r1 0022 r3 r1 0 002 r4 r1 成 上三角 1 2 2 2 8擴充套件資料 行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣。或者說,在 n 維歐幾里得空間中,行列式描述的是一個線性變換對 體積 所造成的影響。行列式...

用行列式定義計算下列行列式利用行列式的定義求下列行列式的值

行列式按定義,就是為n 項的代數和 每一項由不同行不同列的元素相乘得到 注意,丟棄含有元素0的項。顯然,第3 4 5行中,選不同列的3個元素,必然出現0因此,行列式按定義,每一項都等於0,從而結果為0 解 根據行列式的定義,從行列式不同行 或列 中取數的全排列,任意一種排列中全部數字之積,再把所有排...