1樓:匿名使用者
對二甲苯
熔點 12-13 °c
沸點 138 °c
間二甲苯
熔點 -48 °c (225 k)
沸點 139 °c (412 k)
鄰二甲苯
熔點 -24 °c (249 k)
沸點 144.4 °c (418 k)
應該分開來說
像是以上的例子 熔點與分子空間堆積狀態有關也就是說分子對稱性好些 堆疊或是結晶強度會高一點這比較關係到凡德華力強弱的程度
但是對於堆積緊密度狀態 如果沒有3度空間的立體圖樣是很難知道堆積狀態 這一點是難以判斷的
就像間二甲苯比鄰二甲苯的熔點還低
分子越緊密堆積 越靠近 則 凡德華力變大
這在判斷直鏈c或有支鏈c上比較容易
沸點與分子的極性關係比較大
極性越大 則沸點越高
對二甲苯中 極性對於沸點的影響很容易看得出來但事實上影響並沒有這麼大 只差了幾度
因為二甲苯造成極性的是甲基 太弱
若是有重原子出現 像是o cl s 對於極性改變就會差異很大像是氯代甲烷中熔沸點的差異 就比較規律
2樓:手機使用者
二甲苯有三種同分異構體:鄰二甲苯、間二甲苯、對二甲苯。我們可以這樣理解,把這些分子看作一個球體,這三種分子的體積依次增大,分子間的距離也增大,因而分子間作用力減小,熔沸點就降低。
因此它們的沸點依次降低。
從晶體型別看熔、沸點規律
晶體純物質有固定熔點;不純物質凝固點與成分有關(凝固點不固定)。
非晶體物質,如玻璃、水泥、石蠟、塑料等,受熱變軟,漸變流動性(軟化過程)直至液體,沒有熔點。
① 原子晶體的熔、沸點高於離子晶體,又高於分子晶體。
在原子晶體中成鍵元素之間共價鍵越短的鍵能越大,則熔點越高。判斷時可由原子半徑推匯出鍵長、鍵能再比較。如
鍵長: 金剛石(c—c)>碳化矽(si—c)>晶體矽 (si—si)。
熔點:金剛石》碳化矽》晶體矽
②在離子晶體中,化學式與結構相似時,陰陽離子半徑之和越小,離子鍵越強,熔沸點越高。反之越低。
如kf>kcl>kbr>ki,cao>kcl。
③ 分子晶體的熔沸點由分子間作用力而定,分子晶體分子間作用力越大物質的熔沸點越高,反之越低。(具有氫鍵的分子晶體,熔沸點 反常地高,如:h2o>h2te>h2se>h2s,c2h5oh>ch3—o—ch3)。
對於分子晶體而言又與極性大小有關,其判斷思路大體是:
ⅰ 組成和結構相似的分子晶體,相對分子質量越大,分子間作用力越強,物質的熔沸點越高。如:ch4<sih4<geh4<snh4。
ⅱ 組成和結構不相似的物質(相對分子質量相近),分子極性越大,其熔沸點就越高。如: co>n2,ch3oh>ch3—ch3。
ⅲ 在高階脂肪酸形成的油脂中,不飽和程度越大,熔沸點越低。如: c17h35cooh(硬脂酸)>c17h33cooh(油酸);
ⅳ 烴、鹵代烴、醇、醛、羧酸等有機物一般隨著分子裡碳原子數增加,熔沸點升高,如c2h6>ch4, c2h5cl>ch3cl,ch3cooh>hcooh。
ⅴ 同分異構體:鏈烴及其衍生物的同分異構體隨著支鏈增多,熔沸點降低。如:
ch3(ch2)3ch3 (正)>ch3ch2ch(ch3)2(異)>(ch3)4c(新)。芳香烴的異構體有兩個取代基時,熔點按對、鄰、 間位降低。(沸點按鄰、間、對位降低)
④ 金屬晶體:金屬單質和合金屬於金屬晶體,其中熔、沸點高的比例數很大,如鎢、鉑等(但也有低的如汞、銫等)。在金屬晶體中金屬原子的價電子數越多,原子半徑越小,金屬陽離子與自由電子靜電作用越強,金屬鍵越強,熔沸點越高,反之越低。
如:na<mg<al。
合金的熔沸點一般說比它各組份純金屬的熔沸點低。如鋁矽合金<純鋁(或純矽)。
5. 某些物質熔沸點高、低的規律性
① 同週期主族(短週期)金屬熔點。如 linacl>nabr>nai。
通過查閱資料我們發現影響物質熔沸點的有關因素有:①化學鍵,分子間力(範德華力)、氫鍵 ;②晶體結構,有晶體型別、三維結構等,好象石墨跟金剛石就有點不一樣 ;③晶體成分,例如分子篩的桂鋁比 ;④雜質影響:一般純物質的熔點等都比較高。
但是,分子間力又與取向力、誘導力、色散力有關,所以物質的熔沸點的高低不是一句話可以講清的。
3樓:域天宇
只有一些特殊相似的有機物有簡單的規律,好像還是書上有的啊!考試也只會考那個書上有的,頂多加上老師結合高考題加的了,最好和老師聯絡下!這裡不論誰說的都不一定準!勿輕信與人!
4樓:匿名使用者
直鏈狀的就看碳的個數,碳越多溶點越高,碳個數相同的,直鏈的溶點高。
5樓:一頭白痴
c越多熔沸點越高,氧多也可以增加熔沸點,加鹵素也會增加熔沸點,鹵素的數量越多、單個鹵素的原子量越大熔沸點越高。我總結的比較模糊,給你個**吧http://www.
化合物熔沸點的高低是怎麼判斷的?
6樓:zhang__琦
1,首先要確定化合物種類。只有同種化合物種類才能以微觀的角度去判斷熔點或沸點。
2,針對離子化合物,他含有離子鍵的強度是決定熔點的主要因素,離子鍵的鍵能越高,則所需要的能量也越高,所以熔點也就高。
3,離子鍵強度取決與離子的半徑以及所帶電荷量。通常半徑大,熔點小。電荷量大,熔點高。
費點有機化和物的沸點高低有一定的規律,現總結如下:
1、同系物沸點大小判斷,一般隨著碳原子數增多,沸點增大。
如甲烷<乙烷<丙烷<丁烷<戊烷<.....
2、鏈烴同分異構體沸點大小判斷,一般支鏈越多,沸點越小。
如:正戊烷>異戊烷>新戊烷
3、芳香烴的沸點大小判斷,側鏈相同時,臨位>間位>對位。
如:臨二甲苯》間二甲苯》對二甲苯
4、對於碳原子數相等的烴沸點大小判斷,烯烴<烷烴<炔烴
5、同碳原子的脂肪烴的衍生物沸點大小判斷,烯烴的衍生物沸點低於烷烴的同類衍生物。
如:油酸的沸點<硬脂酸
6、不同型別的烴的含氧衍生物的沸點比較,相對分子質量相近的脂肪羧酸>脂肪醇>
脂肪醛7、酚和羧酸與它們對應的鹽沸點比較,酚和羧酸<對應鹽的沸點。如乙酸<乙酸鈉
8、分子量相近的烴的沸點一般低於烴的衍生物。
7樓:
1.一般來說,原子晶體>離子晶體>分子晶體;金屬晶體(除少數外)>分子晶體。
2.同一晶體型別的物質,需要比較晶體內部結構粒子間的作用力,作用力越大,熔沸點越高。
影響分子晶體熔沸點的是晶體分子中分子間的作用力,包括範德華力和氫鍵。
①組成和結構相似的分子晶體,一般來說相對分子質量越大,分子間作用力越強,熔沸點越
高。②組成和結構相似的分子晶體,如果分子之間存在氫鍵,則分子之間作用力增大,熔沸點出
現反常。有氫鍵的熔沸點較高。
③相對分子質量相同的同分異構體,一般是支鏈越多,熔沸點越低。
④組成和結構不相似的分子晶體,分子的極性越大,熔沸點越高。
⑤還可以根據物質在相同的條件下狀態的不同,熔沸點:固體>液體>氣體。
3.原子晶體熔沸點的高低與共價鍵的強弱有關。一般來說,半徑越小形成共價鍵的鍵長越短,
鍵能就越大,晶體的熔沸點也就越高。
4.離子的半徑越小,所帶的電荷越多,則離子鍵越強,熔沸點越高。
5.金屬陽離子所帶的電荷越多,離子半徑越小,則金屬鍵越強,高沸點越高。
如何判斷有機物熔,沸點的高低
8樓:默默她狠傷
有機物的晶體大多是分子晶體,它們的熔、沸點取決於有機物分子間作用力的大小,而分子間作用力與分子的結構(有無支鍵、有無極性基團、飽和程度)、分子量等有關。主要分為下面四個情況:
1、組成和結構相似的物質,分子量越大,其分子間作用力就越大。所以有機物中的同系物隨分子中碳原子個數增加,熔、沸點升高。在通常狀況下分子中含四個碳原子以下的烷烴、烯烴、炔烴是氣體,含四個碳原子以上的是液體,含更多碳原子的是固體。
2、分子式相同時,直鍵分子間的作用力要比帶支鍵分子間的作用力大,支鍵越多,排列越不規則,分子間作用力越小。如: 分子間作用力:
正戊烷》異戊烷》新戊烷。 沸點:30.
07℃>27.9℃>9.5℃。
3、分子中元素種類和碳原子個數相同時,分子中有不飽和鍵的物質熔、沸點要低些。如:硬脂酸 油酸。
熔點:-88.63℃>-103.
7℃ 69.5℃>14.0℃ 。
4、分子量相近時,極性分子間作用力大於非極性分子間的作用力。分子中極性基團越多,分子間作用力越大。沸點:
78.5℃>34.51℃ 12.
27℃>0.5℃。另外,分子間形成氫鍵,分子內形成氫鍵的物質的熔、沸點也有一定的規律。
9樓:匿名使用者
中學階段,主要掌握下列規律:第一,看分子間是否有氫鍵,與氮或氧相連的原子中有氫的化合物(如酸、醇等)分子間含有氫鍵,有氫鍵的物質,熔沸點較高。第二,沒有氫鍵的情況下,相對分子質量越大,分子間作用力越大,熔沸點越高。
第三,相對分子質量相等時,支鏈越多,熔沸點越低;雙鍵、三鍵越多,熔沸點越低;極性大的物質,熔沸點越高。第四,苯的同系物,鄰、間、對熔沸點依次降低
10樓:沉洋艦
有機物的沸點高低變化是有規律可循的。液體沸點的高低決定於分子間引力的大小,分子間引力越大,使之沸騰就必須提供更多的能量,因此沸點就越高。分子間的引力稱範德華力,它包括取向力、誘導力和色散力。
除此之外還有一種力叫氫鍵,它的存在也對有機物的沸點有重要影響。
分子間引力的大小取決於分子結構,所以歸根到底,有機物沸點的高低取決於分子本身的結構,其變化規律可以歸納為以下幾個方面。
1.結構相似看分子量
對結構相似的有機物,其沸點高低主要由他子量的大小來決定。因為分子量越大,分子間的範德華力越大,沸點就越高。例如正烷烴系列:
名稱 分子式 狀態 沸點(℃)
甲烷 ch4 氣 —164
乙烷 c2h6 氣 —88.6
丙烷 c3h8 氣 —42.1
丁烷 c4h10 氣 —0.5
戊烷 c5h12 液 36.1
庚烷 c7h16 液 68.9
辛烷 c8h18 液 125.7
正烷烴是非極性分子,分子間主要存在色散力。正烷烴分子的分子量越大即含碳原子數越多,原子個數也就越多,色散力當然也就越大。因此,正烷烴的沸點隨著碳原子數的增多而升高。
2.同類同分異構體看支鏈
在有機物的同分異構體中,分子中所含的支鏈越多,其沸點越低。如戊烷的三種同分異構體的沸點如下:
名稱 正戊烷 異戊烷 新戊烷
結構 ch3ch2ch2ch2ch3 (ch3)2chch2ch3 (ch3)4c
沸點 36.1 27.9 9.5
(℃)分子中支鏈的增多,使分子間相互靠近受到阻礙,分子間接近程度或者說分子間接觸面積減小。由於色散力只有近距離內方能有效地產生作用.因此隨著分子中支鏈的增多,分子之間距離增大,必然表現出有機物沸點的降低。
3.分子量相同看分子極性
如果有機物分子是極性分子,由於極性分子具有偶極,而偶極是電性的。因此,極性分子之間除了具有色散力外,還具有偶極之間的靜電引力。這樣,極性分子之間的分子間力比非極性分子要大得多,所以使沸點升高。
例如分子量相同的丁烷和丙酮:
分子量 結構 沸點(℃)
丙酮 58 56.2
丁烷 58 ch3ch2ch2ch3 —0.5
丙酮分子中含有羰基,由於碳氧電負性不同,碳原子上帶有部分正電荷,氧原子上帶有部分負電荷。當這樣的極性分子相互接近時,勢必產生較大的分子間力,從而表現出沸點值較大程度地升高。
4.不要忘記看氫鍵
如果有機物分子間能形成氫鍵,在液態時,分子間就能通過氫鍵結合形成較大的締合體。這樣的液體沸騰氣化時,不僅要破壞分子間的範德華力,而且還必須消耗較多的能量破壞分子間的氫鍵,因此,含有氫鍵的有機物較之分子量相近的其它有機物,應具有反常的高沸點。例如甲醇和乙烷:
分子量 結構 沸點(℃)
甲醇 32 ch3oh 64.9
乙烷 30 ch3—ch3 —88.6
醇的沸點反常高就是由於其分子間有較強的氫鍵而發生締合。
除了醇之外,酚、羧酸和胺等也含有氫鍵,其沸點也相應較高。
怎麼判別熔沸點的高低,如何判斷有機物熔,沸點的高低
大致規律是 原子晶體大於離子晶體和金屬晶體大於分子晶體.下面給同種晶體比較的規律 1.原子晶體比較鍵能和鍵長,一般鍵長 原字半徑 越短 小 鍵能就越大,熔沸點就越高 2.離子晶體 組成晶體的離子半徑越小,融沸點越高 3.分子晶體比較分子間作用力,單質的相對分子質量越大,分子間作用力越大,熔沸點越高 ...
怎樣判斷化合物的熔沸點高低怎麼判斷物質熔沸點的高低?
1.一般來說,原子晶體 離子晶體 分子晶體 金屬晶體 除少數外 分子晶體。2.同一晶體型別的物質,需要比較晶體內部結構粒子間的作用力,作用力越大,熔沸點越高。影響分子晶體熔沸點的是晶體分子中分子間的作用力,包括範德華力和氫鍵。組成和結構相似的分子晶體,一般來說相對分子質量越大,分子間作用力越強,熔沸...
有機物熱穩定性熔點沸點如何比較有機化合物的熔點沸點
溶沸點地不能說明熱穩定性差 熱穩定性就是說物質受熱時,會不會分解,會不會改變原有的分子結構,比如說金屬單質,溫度極高時也能保證原子的完整,但是高到一定程度也會聚變的,有一些物質,比如說次氯酸,受熱時極易分解,就是他熱穩定性差 大多數有機物的熱穩定性差,但是也有一些的熱穩定性極強,什麼聚四氟乙烯,等等...