1樓:外人
經常用就不會忘記拉 正弦函式 sin(a)=a/h 餘弦函式 cos(a)=b/h 正切函式 tan(a)=a/b 餘切函式 cot(a)=b/a 正割函式 sec (a) =h/b 餘割函式 csc (a) =h/a 注:a—所研究角的對邊 b—所研究的鄰邊 h—所研究角的斜邊 三角函式常用公式: 同角三角函式間的基本關係式:
·平方關係: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·商的關係: tanα=sinα/cosα cotα=cosα/sinα ·倒數關係:
tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函式恆等變形公式: ·兩角和與差的三角函式: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式:
sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα ·半形公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·積化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化積公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
2樓:牧人
誘導公式就一句話: 奇變偶不變,符號看象限! 其中奇指加π/2的奇數倍,偶指加π/2的偶數倍,變與不變是指sin與cos,tan與cot之間是否互換; 變後+、-符號就依象限而定。
三角函式的誘導公式,三角函式誘導公式的作用和用法
一 三角函式誘導公式的作用 可以將任意角的三角函式轉化為銳角三角函式。例如 1 sin390 sin 360 30 sin30 1 2.2 tan225 tan 180 45 tan45 1.3 cos150 cos 90 60 sin60 3 2.二 三角函式誘導公式的用法 1 公式一到公式五函式...
高一三角函式誘導公式怎麼用
誘導公式和 奇變偶不變,符號看象限 都是對三角函式的處理方法,兩者只要完全掌握一個,另一個大概弄清楚,以防萬一,就可以了。你想以哪個為主?解 因為sin a sina,cos a cosa 所以sin a cos a sina cosa 2 3 所以 sina cosa 2 2 3 2 即 sin ...
三角函式的換算公式,三角函式的換算公式
sinx sin x cosx cos x tanx tan x sin x sinx cos x cosx sin x 1 2 cosx cos x 1 2 sinx 奇變偶不變,符號看象限 求常見三角函式換算公式 兄die 你去買本小甘吧 上面什麼公式都有 不用這麼麻煩的 不貴 三角函式的誘導公...