高數二重積分的概念與性質,高數問題二重積分的概念。

2021-05-23 10:12:15 字數 1718 閱讀 8488

1樓:西域牛仔王

積分割槽域是半徑為 a 的圓,

所求積分是區域面積,

因此等於 πa2 。

高數問題——二重積分的概念。

2樓:

被積函式為1時,二重積分=區域d的面積=半軸為2與1的橢圓域面積=π*2*1=2π。

注:橢圓域的面積=π*長半軸*短半軸。

3樓:匿名使用者

橢圓的面積不會求嗎。。

二重積分的性質

4樓:裝甲擲彈兵水瓶

性質1、(積分可加性) 函式和(差)的二重積分等於各函式二重積分的和(差),即

性質2、(積分滿足數乘) 被積函式的常係數因子可以提到積分號外,即

性質3、 如果在區域d上有f(x,y)≦g(x,y),則

性質4、 設m和m分別是函式f(x,y)在有界閉區域d上的最大值和最小值,σ為區域d的面積,則

性質5、 如果在有界閉區域d上f(x,y)=k(k為常數),σ為d的面積,則sσ=k∫∫dσ=kσ。設函式f(x,y)在有界閉區域d上連續,σ為區域的面積,則在d上至少存在一點(ξ,η),使得

擴充套件資料:

二重積分意義

當被積函式大於零時,二重積分是柱體的體積。

當被積函式小於零時,二重積分是柱體體積負值。

幾何意義

在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

例如二重積分:

其中表示的是以上半球面為頂,半徑為a的圓為底面的一個曲頂柱體,這個二重積分即為半球體的體積。

數值意義

二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。

5樓:匿名使用者

性質1 函式和(差)的二重積分等於各函式二重積分的和(差),即

∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ

性質2 被積函式的常係數因子可以提到積分號外,即

∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k為常數)

性質3 如果在區域d上有f(x,y)≦g(x,y),則∫∫f(x,y)dσ≦∫∫g(x,y)dσ

推論 ∣∫∫f(x,y)dσ∣≦∫∫∣f(x,y)∣dσ

性質4 設m和m分別是函式f(x,y)在有界閉區間d上的最大值和最小值,σ為區域d的面積,

則mσ≦∫∫f(x,y)dσ≦mσ

性質5 如果在有界閉區域d上f(x,y)=1, σ為d的面積,則σ=∫∫dσ

性質6 二重積分中值定理

設函式f(x,y)在有界閉區間d上連續,σ為區域的面積,則在d上至少存在一點(ξ,η),使得 ∫∫f(x,y)dσ=f(ξ,η)●σ

6樓:翱翔四方

恆等於1的話,那麼曲頂柱體的頂面就是z=1了,就變成一個真正的柱體了,高為1,柱體的體積等於底面積乘以高,所以二重積分=底面積乘以1=底面積。明白了嗎?

7樓:允爾陽

二重積分的概念與性質,你看懂點沒

高數問題二重積分,高數問題二重積分的概念。

首先畫圖,看射線方向,應該是取 2到 2,然後 的範圍第一種方法可以用極座標代換,第二種可以用直徑對應的直線角為直角。詳情如下喻隊都看到積極參加基礎課程看看超級超級就是快上課 高數問題 二重積分的概念。被積函式為1時,二重積分 區域d的面積 半軸為2與1的橢圓域面積 2 1 2 注 橢圓域的面積 長...

高數二重積分問題,高數二重積分問題

這是我的理解 二重bai積du 分和二次積分zhi的區別 二重積分是有關面積的積分,二dao次積專分是兩次單變數積分。屬 1當f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。2可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定...

高數中的二重積分如何選擇高數中的二重積分如何選擇x型,y型區域?

只要看積分割槽域 1 如果該區域一 個x對應了幾個y,那麼為x型區域 2 如果該區域一個y對應了幾個x,那麼為y型區域 3 如果一個區域既有x型又有y型,則需分開考慮x型 任意一條平行於y軸的直線與圖形只有一個或兩個交點。y型 任意一條平行於x軸的直線與圖形只有一個或兩個交點 在邊界才可能存在一個點...