1樓:韓苗苗
向量的乘法分為bai數量積和向量積兩du種。zhi
對於向量的數量dao積,計算公式為版:
a=(x1,y1,z1),b=(x2,y2,z2),a與b的數量積權為x1x2+y1y2+z1z2。
對於向量的向量積,計算公式為:
a=(x1,y1,z1),b=(x2,y2,z2),則a與b的向量積為
擴充套件資料
兩個向量的數量積(內積、點積)是一個數量(沒有方向),記作a·b。向量的數量積的座標表示:a·b=x·x'+y·y'。
兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b(這裡「×」並不是乘號,只是一種表示方法,與「·」不同,也可記做「∧」)。若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:
垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b垂直,則∣a×b∣=|a|*|b|
2樓:匿名使用者
比如(1,2)(1,3)=1+6=7
3樓:匿名使用者
橫乘橫縱乘縱然後相加
4樓:匿名使用者
x1×x2+y1×y2
向量的乘積公式是什麼??
5樓:人設不能崩無限
|向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夾角)
向量之間不叫"乘積",而叫數量積,如a·b叫做a與b的數量積或a點乘b
6樓:淡夕丘茶
最低0.27元/天開通百度文庫會員,可在文庫檢視完整內容》
原發布者:amandawenjiao
向量間的乘積
一、兩向量的數量積
二、兩向量的向量積
三、向量的混合積
四、小結思考題
一、兩向量的數量積r例項一物體在常力f作用下沿直線從點m1移動rr表示位移,到點m2,以s表示位移,則力f所作的功為rrrrw=fscosθ(其中θ為f與s的夾角的夾角)其中rrrr數量積為1.定義向量a與b的數量積為a⋅brrrrrra⋅b=abcosθ(其中θ為a與b的夾角的夾角)其中(0≤θ≤π)數量積也稱為「點積」數量積也稱為「點積」、「內積」.內積」關於數量積的說明:
關於數量積的說明:rrrrr2證qθ=0,∴a⋅a=aacosθ=a.rrrr(2)a⋅b=0⇐⇒a⊥b.
2.數量積的運演算法則:數量積的運演算法則:
rrr2(1)a⋅a=a.rrrr(1)交換律:a⋅b=b⋅a;交換律:
rrrrrrr分配律:(2)分配律:(a+b)⋅c=a⋅c+b⋅c;rrrrrr為數:
(3)若λ為數:λa)⋅b=a⋅(λb)=λ(a⋅b),(rrrr為數:若λ、µ為數:
(λa)⋅(µb)=λµ(a⋅b).3.數量積的座標運算rrrrrrrr設a=axi+ayj+azk,b=bxi+byj+bzkrrrrrrrra⋅b=(axi+ayj+azk)⋅(bxi+byj+bzk)rrrrrrrrrqi⊥j⊥k,∴i⋅j=j⋅k=k⋅i=0,rrrq
7樓:匿名使用者
向量叉積=向量的模乘以向量夾角的正弦值;
向量點積=向量的模乘以向量夾角的餘弦值;
向量相乘公式
8樓:河傳楊穎
向量a=(x1,y1),向量b=(x2,y2)
a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夾角)
ps:向量之間不叫"乘積",而叫數量積。如a·b叫做a與b的數量積或a點乘b
向量積,數學中又稱外積、叉積,物理中稱矢積、叉乘,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個向量而不是一個標量。
向量幾何表示
向量可以用有向線段來表示。
有向線段的長度表示向量的大小,向量的大小,也就是向量的長度。長度為0的向量叫做零向量,記作長度等於1個單位的向量,叫做單位向量。箭頭所指的方向表示向量的方向。
代數規則
1、反交換律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、與標量乘法相容:(ra)×b=a×(rb)=r(a×b)。
4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,線性性和雅可比恆等式別表明:具有向量加法和叉積的r3構成了一個李代數。
6、兩個非零向量a和b平行,當且僅當a×b=0。
9樓:匿名使用者
向量相乘公式如下:
向量積(向量相乘),數學中
又稱外積、叉積,物理中稱矢積、叉乘,是一種在向量空間中向量的二元運算。
與點積不同,它的運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量和垂直。其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。
10樓:半杯紅酒
^|向|兩個向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,設向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。
向量的乘積公式
向量a=(x1,y1),向量b=(x2,y2)a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夾角)ps:向量之間不叫"乘積",而叫數量積..如a·b叫做a與b的數量積或a點乘b
向量積公式
向量積|c|=|a×b|=|a||b|sin向量相乘分內積和外積
內積 ab=丨a丨丨b丨cosα(內積無方向,叫點乘)外積 a×b=丨a丨丨b丨sinα(外積有方向,叫×乘)那個讀差,即差乘,方便表達所以用差。
另外 外積可以表示以a、b為邊的平行四邊形的面積=兩向量的模的乘積×cos夾角
=橫座標乘積+縱座標乘積
11樓:矯韋經思
向量相乘分為點乘和叉乘
點乘的結果是一代數,而叉乘的結果是一向量.
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i
jk||a1b1
c1||a2
b2c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
12樓:紹芷文迮大
向量相乘分內積和外積
內積ab=丨a丨丨b丨cosα
(內積無方向
叫點乘)
外積a×b=丨a丨丨b丨sinα
(外積有方向
叫×乘)那個讀差
即差乘方便表達所以用差,別理解錯誤
另外外積可以表示以a、b為邊的平行四邊形的面積=兩向量的模的乘積×cos夾角
=橫座標乘積+縱座標乘積
13樓:匿名使用者
向量積,數學中又稱外積、叉積,物理中稱矢積、叉乘,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量的和垂直。
向量a=(x1,y1),向量b=(x2,y2)a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夾角)ps:向量之間不叫"乘積",而叫數量積..如a·b叫做a與b的數量積或a點乘b
希望能幫到你,滿意望採納哦。
14樓:傷感美
樓主: 你好!對於有座標的→a向量(a,b)b向量(c,d) a向量*b向量=ac+bd 對於沒做標的→向量a·向量b=|a||b|cosα 依舊miss伱 團隊 誠摯為您解答。
記得采納啊
15樓:雙·彩虹
=兩向量的模的乘積×cos夾角
=橫座標乘積+縱座標乘積
16樓:洛宇
a.b=x1y1+x2y2
兩個座標向量相乘怎麼表示
17樓:河傳楊穎
向量的乘法分為數量積和向量積兩種。
對於向量的數量積,計算公式為:
a=(x1,y1,z1),b=(x2,y2,z2),a與b的數量積為x1x2+y1y2+z1z2。
對於向量的向量積,計算公式為:
a=(x1,y1,z1),b=(x2,y2,z2),則a與b的向量積為
代數規則:
1、反交換律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、與標量乘法相容:(ra)×b=a×(rb)=r(a×b)。
4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,線性性和雅可比恆等式別表明:具有向量加法和叉積的r3構成了一個李代數。
6、兩個非零向量a和b平行,當且僅當a×b=0。
18樓:你也敢配姓趙
在平面直角座標系中,分別取與x軸、y軸方向相同的兩個單位向量i,j作為一組基底.a為平面直角座標系內的任意向量,以座標原點o為起點作向量op=a.由平面向量基本定理知,有且只有一對實數(x,y),使得 a=向量op=xi+yj,因此把實數對(x,y)叫做向量a的座標,記作a=(x,y).
這就是向量a的座標表示.其中(x,y)就是點p的座標.向量op稱為點p的位置向量.
向量垂直平行的公式兩個向量垂直,有什麼公式
向量垂直,平行的公式為 若a,b是兩個向量 a x,y b m,n 則a b的充要條件是a b 0,即 xm yn 0 向量平行的公式為 a b a b xn ym 0 在數學中,向量,指具有大小和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指 代表向量的方向 線段長度 代表向量的大小。與向量...
向量分別與其他兩個向量垂直,等於這兩個向量乘積
對於2個向量a和復b,定義一個向量制c c a b c的方向垂直於a和b所在的平面,符合右手定則 這是向量積的定義。你的表述 一個向量分別與其他兩個向量垂直,等於這兩個向量乘積 有點問題,不是等於兩個向量的向量積,而是 模值等於兩個向量的向量積的模值,舉個例子 a 1,2,1 b 2,3,1 則 c...
兩個關於向量的向量積叉乘的問題。是關於叉乘為什麼被
我了個去,這些東西課本上肯定會有的。第一個問題 叉乘用途比較廣泛了,比如說角加速度方向的求法,電磁感應裡的右手定則 高中學的都已經忘光了。自己去翻翻書吧 再比如力矩的求法等等。第二個問題 你是數學系的嗎,如果不是的話你真沒必要知道它是怎麼推導的,因為這玩意你用不著而且也記不下來。這裡給你提供一個思路...