1樓:無法____理解
左極限為-1.右極限為1.
解答過程:
lim/{(e^1/x)+1,x->0
原式等於1-2/( e^(1/x)+1).
當x趨於0+時,e^(1/x)趨於無窮,
原式極限為1,即右極限為1.
當x趨於0-時,e^(1/x)趨於0,
原式極限為-1;即左極限為-1.
以上思想用了用洛必達法則。
洛必達法則是在一定條件下通過分子分母分別求導再求極限來確定未定式值的方法。這種方法主要是在一定條件下通過分子分母分別求導再求極限來確定未定式的值.在運用洛必達法則之前,首先要完成兩項任務:一是分子分母的極限是否都等於零(或者無窮大);二是分子分母在限定的區域內是否分別可導;如果這兩個條件都滿足,接著求導並判斷求導之後的極限是否存在:
如果存在,直接得到答案;如果不存在,則說明此種未定式不可用洛必達法則來解決;如果不確定,即結果仍然為未定式,再在驗證的基礎上繼續使用洛必達法則。
拓展資料「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。
極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。
2樓:巴山蜀水
解:本題中的左右極限,是指當變數x從"<0"、">0"的方向趨於0時的極限。故,左極限是當→0-時,函式的極限。
∵x→0-時,e^(1/x)→e^(-∞)→0,∴lim(x→0-)=-1/1=-1。同理,可求其右極限。∵x→0+時,e^(1/x)→e^(∞)→∞,∴lim(x→0+)=1/1=1。
供參考。
3樓:風箏lk人生
左極限:x<0,x無限接近0,分子的極限是-1,分母是1,所以左極限是-1
右極限:x>0 , x無限接近0,(e^1/x)極限是無窮大,原式=1-2/
所以右極限是1。
4樓:慶呆呆
0點附近:1/x的左右極限不同,從而影響了e^1/x的左右極限不同。1/x的左極限是負無窮,1/x的右極限是正無窮。則e^1/x的左極限是0,右極限是正無窮。
5樓:學員創號
x趨向0-時,1/x趨向於負無窮,e^1/x趨向於0,0-1/0+1,等於-1;x趨向0+時,1/x趨向正無窮,e^1/x趨向正無窮,此時在正無窮面前+-1無影響,直接忽略,所以等於1
lim(x->0)(1-e^1/x)/(1+e^1/x)不存在,此題如何解釋左右極限不等?
6樓:麟趾
這是由於copyx->0+和0-時1/x的極限不同,分別是+無窮和bai-無窮,所以最終du的極限也不同
是說zhi,x->0+,1/x->+∞dao,e^(1/x)->+∞,2/[1+e^(1/x)]->0,2/[1+e^(1/x)]-1->-1
而x->0-,1/x->-∞,e^(1/x)->0,2/[1+e^(1/x)]->2,2/[1+e^(1/x)]-1->1
求高數解答:為什麼lim e^[1/(x-1)] 的左右極限是0和+∞
7樓:匿名使用者
上式 1/(x-1) → -∞, 故極限是 0,
下式 1/(x-1) → +∞, 故極限是 +∞。
y1x1x的高階導數,高階導數1x1x
y 1 x 1 x 1 2 1 x 1 2 1 x 1 y 2 1 x 2 y 4 1 x 3 y 12 1 x 4 y的專n階導 屬數 2 1 n n 1 x n 1 高階導數 1 x 1 x 1 x 1 x 1 1 一階導 x 1 2 二階導 2 x 1 3 三階導 3 2 x 1 4 n階導 ...
高等數學,x0求lime1x
你這是冪函式運算都忘記了呀 e ln 1 x x e e ln 1 x x 1 你這 x x 1 怎麼來的?高等數學求極限,求lim 1 e 1 x 1 x 1 x x趨於0 lim x bai0 1 e 1 x 1 x 1 x lim x 0 e ln e lim x 0 1 ln 1 x x x...
1 x1 x 的極限,x趨向0結果是多少?1 x和1 x都是在根號裡面的,具體過程,答案X怎麼得來的
你好lim 1 x 1 x lim 2x 1 x 1 x 0 數學輔導團 為您解答,不理解請追問,理解請及時選為滿意回答!謝謝!這種情況可以直接帶入x的值,lim 1 x 1 x 1 0 1 0 1 1 0,但有些不能直接帶入 如果x作分母的話就不能直接帶入 分母為0無意義 其他不懂的可以隨時問我 ...