1樓:裘珍
答:如果
說f(x)在x=a(本題是a=0的特例)的鄰域內連續,則x在a點是連續的,如果不連續,就加上「去心鄰域」了。也就是說,從函式從定義域來說,可能存在x≠0,但是從定義上,當x=0時,f(x)=0, 這樣就使得f(x)在其鄰域內連續了。因此,從說法上說的是函式在x=0的某鄰域內連續,就是在x=0點也是連續的(因為有定義);所謂某鄰域就是鄰域的半徑大小不確定,也可能很小,也可能是|x-a|<|b|,|c|,......。
因為是定義函式,f(x)不是具體的函式,不得已用比較函式來計算出f(0)的值,同時告訴讀者,-f(x)與(1-cosx)在x=0時,是等價無窮小。這樣,就確保了f(x)在x=0處,連續可導;同時保持了f(x)所代表的函式的廣泛性,也就是說,不止有一個f(x)具備這樣的條件,有無數個f(x)具備這樣的條件,不需要一個一個地列舉。
2樓:匿名使用者
lim(x->0) f(x)/[x(1-cosx)]分母->0
分子一定要 ->0 , 否則 極限不存在
lim(x->0) f(x)
=f(0)=0
3樓:若見難見
f(0)=0,不一定是奇函式
,如:f(x)=x²,滿足f(0)=0,但這明顯是個偶函式;
奇函式也不一定有f(0)=0,如:f(x)=1/x,這是一三象限的反比例函式,關於原點對稱,是奇函式,
但明顯沒有f(0)=0這一結論.
正確的說法是這樣的:對於奇函式而言,若0屬於定義域,則必有f(0)=0;
若f(0)≠0,則必有0不屬於定義域;
4樓:射手***白
鄰域是包括中心點的,
你想成去心鄰域了。望採納
5樓:築夢小卒
因為題目中那個極限分母趨向於0,而極限存在,則分子一定趨向於0,即f(0)
已知f(x)在x=0的某個鄰域內連續,且limx->0f(x)/1-cosx=2,則在x=0處f(x)?
6樓:小小芝麻大大夢
limx->0f(x)/(1-cosx)=2。
∵x->0分母1-cosx→0。
極限=2,f(0)→0。
洛必達法則:
lim(x->0)f(x)/(1-cosx)=lim(x->0)f'(0)/sin0,分母依舊為0,極限存在,f'(0)=0。
繼續求導:=lim(x->0)f''(0)/cos0=2。
∴f''(0)=2>0。
∴f(0)=0為極小值。
7樓:人生如戲
前面直接用洛必達的不對,因為題目沒有提到且沒辦法推出f(x)在x=0的某鄰域內可導,只是在某鄰域內連續而已。本題主要通過函式連續的定義、導數定義、函式極限的保號性、極值定義求解。注意判定極值的時候,不能用極值的三個充分條件判定,因為他們的前提都是在x0的某鄰域內可導。
8樓:星丶
由於1-cosx在x=0的左鄰域與右鄰域內都有limx→0 1-cosx>0 由保號性與連續性可知鄰域內的點有limx→0 f(x)=f(x)>0=f(0) 即f(0)是極小值點
由極小值的定義如下:一般地,設函式f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函式f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。
看了他們的答案好像都用到了導數,實際這題考察的是極值的原始定義
9樓:低言淺唱情詩
證明:由(x→0)limg(x)/x=-1 (極限為-1,分母趨於0,則分子必趨於0)
可知(x→0)limg(x)=0 即g(0)=0於是(x→0)lim[g(x)-g(0)]/(x-0)=-1則g(x)在該鄰域內可導且g'(0)=-1(x→0)limf(x)/g²(x)=2
因為(x→0)limg²(x)=0
則(x→0)limf(x)=0
f(0)=0
對(x→0)limf(x)/g²(x)=2進行變形(x→0)limf(x)/g²(x)
=(x→0)lim[f(x)/x][x²/g(x)]=(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (變成兩個極限之積,並對右邊的極限用洛必達法則)
=(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)
=(x→0)lim[f(x)/x²]•(-1)•(-1)=2因此f(x)=2x²+o(x)
於是可以得到(x→0)limf(x)/x=0即f'(0)=0
10樓:匿名使用者
前面所bai
有用洛必達的也真是不du
怕誤人子弟啊。
zhi。這題考的是定義啊,偏偏dao正版
確答案放在了最下面。
連續卻未告權知可導,洛洛洛,泰勒都要哭了誒。下面答案中有用定義做的建議提到推薦答案,答案中1-cosx用了泰勒近似1/2x^2+o(x^2)
11樓:緊抱著大神腿
首先 有f(0) = 0; 等價來無窮小 1-cosx ~1/2x2
lim x->0 (f(x)-f(0))/(x-0) = lim x->0 x * f(x)/x2 = 0 所以f'(0) = 0;
lim x->0 ((f(x)-f(0))/(x-0) -f'(0))/(x-0) = f''(x) = lim x->0 f(x) /x2 =1>0;
顯然自因為bai f'(0) = 0; f''(0)>0。所以在x=0處有極小值du!
純手打,有bug的地
zhi方請提出,水平有限有dao誤地方請見諒 謝謝!
高數題:①證明,如果函式f(x )當x →x0時極限存在,則f (x )在x0處的某一領域內有界
12樓:116貝貝愛
證明過程如下圖:
證明函式有界的方法:
利用函式連續性,直接將回
趨向值帶入函式自變數中,此時要答要求分母不能為0。
當分母等於零時,就不能將趨向值直接代入分母,因式分解,通過約分使分母不會為零。若分母出現根號,可以配一個因子使根號去除。
如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)
採用洛必達法則求極限,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。符合形式的分式的極限等於分式的分子分母同時求導。
13樓:謝煒琛
|而|函式f(x )當x →x0時極限抄存在,不妨設bai:limf(x)=a(x →x0)
根據定義
du:對任意ε>0,存在δ>0,使當|zhix-x0|<δ時,有|f(x)-a|<ε
而|daox-x0|<δ即為x屬於x0的某個鄰域u(x0;δ)又因為ε有任意性,故可取ε=1,則有:|f(x)-a|<ε=1,即:a-10,當任意x屬於x0的某個鄰域u(x0;δ)時,有|f(x)| 證畢有不懂歡迎追問 14樓: 複製貼上一段 設x→x0時,f(x)→a 則對任意ε>0,存在δ>0,當 0<|x-x0|<δ時|f(x)-a|<ε 即 a-ε 這說明f(x)在那去心領域是有界的 高數問題,函式極限保號性定理的逆定理成立嗎?(在x0某去心鄰域內f(x)>0,那麼極限a大於0嗎? 15樓:匿名使用者 教材上有推論,推論如果在x的某去心鄰域內f(x)≥0(或f(x)≤0),而且limf(x)=a,那麼a大於等於0。 16樓:匿名使用者 成立【如果在x0某去心鄰域內f(x)>0,那麼極限a大於等於0。】 17樓:我只是一粒凡塵 limf(x)=a x趨於無窮。 由f(x)>0不能推出極限a>0 反例:f(x)=1/x 1/x雖然大於0,但它的極限等於0。 18樓:啃瓜演員 逆定理不成立 1: 函式極限保號性後面說的是推論,並非逆定理。 2:推論成立是有條件的 即在x0的某去心鄰域內 所有的f(x)必須滿足大於0或小於0才能證得f(x)>0,a>0。 好好翻書很重要!!! 19樓:啟迪狗 成立,我抄現證明函式極限保序性定理的逆定理成立。逆定理應為:若在xo的去心鄰域內,fx恆>gx,且fx在xo處極限為a,gx在xo處極限為b,則a>b。證明如下: 設hx等於fx-gx,在xo去心鄰域內hx恆>0,在x趨近xo處fx,gx極限均存在,運用極限運演算法則,hx在xo處極限為a-b,因為hx在xo的去心鄰域內恆>0,所以其在xo處極限必>0,所以a-b>0,a>b 對於最佳答案答主,我想說書中推論成立不能表明沒有寫出的推論不成立,看高數書固然重要,但跳出書本自己尋找答案和新東西也很重要。 20樓:匿名使用者 逆定理不成立,在教材保號定理下面的一段有分析。此處也是考研時容易出題的地方。仔細琢磨吧。 設函式f(x)在x=0處連續,下列命題錯誤的是( )a.若limx→0f(x)x存在,則f(0)=0b.若limx→0f(x) 21樓:匿名使用者 首先,由函式duf(x)在x=0處連續,zhi有limx→0f(x)=f(0),dao 所以,lim x→0f(x) x→f(0)0. (內1)選項a. 若lim x→0f(x) x存在容,也就是x→0時,f(0) 0的極限存在, 如果f(0)≠0,則lim x→0f(x) x=∞,這樣一來,lim x→0f(x) x的極限也就不存在了,所以f(x)=0, 故選項a正確. (2)選項b. 根據選項a的分析,同理選項b,由於lim x→0[f(x)+f(?x)]=2f(0),因而也是成立的,故選項b正確. (3)選項c. 由選項a,我們知道f(0)=0, 所以lim x→0f(x) x=lim x→0f(x)?f(0) x=f′(0),故f′(0)存在, 故選項c正確. (4)選項d. 我們通過舉反例,比如:f(x)=|x|,顯然滿足題目條件,但f(x)在x=0處不可導,故選項d錯誤.故選:d. 大一高數題 函式f(x)在x0的某一去心鄰域內無界是limx→x0 f(x)=無窮 的 22樓:我是一個麻瓜啊 必要但不充分條件 如果趨於無窮,在那領域無界是顯然的。現在找一個在0點某鄰域無界,但不為無窮的例子.考慮 f(x)= 1/x*sin(1/x),在x→0時,取 an= 1/(2nπ),得到f(an)=0,說明有子列收斂於0。 取 bn = 1/(2nπ+π/2),得到f(bn)= 2nπ+π/2,說明有子列趨向無窮,所以無界.,但兩個子例並不全趨無窮,x→0時,不是無窮大。 我找copy 了部分資料弄明白了這道題 這裡最終的bai問題是求 導函 du數f x 是否連續問題zhi 不僅僅是洛dao必達問題 做到一勞永逸 函式或導函式連續條件 1 fx該區域有定義 2 lim x x0 fx a 極限存在 3 lim x x0 fx f x0 第3步其實就是判斷在左右極限存... f x 是f x 的導數 f x0 0,說明f x 在x0附近是增函式而f x0 0,根據增函式,若有x1x0 有f x1 f x2 a 0,令x0 a x1,x0 a x2,即f x0 a 0,f x0 a 0 因此函式f x 在區間 x0 a,x0 上減少,回在 x0,x0 a 上單調增加答 f... 左導數的定義是這點左鄰域內點的函式值f x 減f x0 除以 x x0 後的極限 x趨向x0 所以左右導數的定義是以f x0 有意義為前提的 所以不言自明 f x 在x0處可導的充要條件是左右導數存在且相等。那麼f x x x不等於0 在0處的左右導數是否都存在?你問的是不是 f x x x 0 1...fx在x0的某鄰域有定義,在x0的某去心鄰域可導
設函式fx在點x0的某鄰域內有定義,且f x0 0,fx0 0,則一定存在a0,使得()
f x 在x0處可導的充要條件是x0左導數和右導數存在且相等,這句話為什麼是對的。不是應該加上x