1樓:匿名使用者
解:∵a=1,2cosc+c=2b,
∴2acosc+c=2b,
2sinacosc+sinc=2sinb
2sinacosc+sinc=2sin(
a+c)
2sinacosc+sinc=2sinacosc+2cosasincsinc=2cosasinc
2cosa=1
cosa=1/2
cosa=(b²+c²-a²)/2bc=(b²+c²-1)/2bc=1/2
b²+c²-1=bc
(b+c)²-1=3bc,
∵bc≤1/4(b+c)²
∴(b+c)²-1≤3/4(b+c)²,
∴(b+c)²≤4
∴b+c≤2,
∴a+b+c≤3,
∵b+c>a(三角形兩邊之和大於第三邊),∴a+b+c>2,
∴△abc的周長取值範圍(2,3]
2樓:東素花甫鳥
(1)2acosc+c=2b,利用正弦定理2sinacosc+sinc=2sinb,
將sinb=sin(a+c)=sinacosc+cosasinc代入得sinc=2cosa
sinc,
即cosa=12
,a=π
3(6分)
(2)由
bsinb=c
sinc=a
sina=2
3得,l△abc=23
(sinb+sinc)+1,
將c=2π
3?b代入化簡得l△abc=2sin(b+π6)+1,因為π6
<b+π6<
5π6所以周長的取值範圍是(2,3](12分)
在△abc中,內角a,b,c的對邊分別為a,b,c.已知cosa=13,sinb=2cosc.(1)求tanc的值;(2)若a=22,
在△abc中,內角a,b,c所對的邊分別為a,b,c,已知a=π/4,b²-a²=c²/2. (1
3樓:我是一個麻瓜啊
tanc的值解法如下:
餘弦定理表示式:
餘弦定理表示式(角元形式):
擴充套件資料
餘弦定理的證明:
如上圖所示,△abc,在c上做高,將c邊寫:
將等式同乘以c得到:
對另外兩邊分別作高,運用同樣的方法可以得到:
將兩式相加:
已知a,b,c為abc的內角a,b,c的對邊,向量m
解 1.向量m 向量n cosa 3 sina 2sin a 6 1,則sin a 6 1 2.而0 2.1 sin2b sinb 2 cosb 2 sinb 2 cosb 2 2 sinb cosb sinb 2 cosb 2 sinb cosb 2 sinb cosb sinb cosb sin...
已知a,b,c為ABC的內角A,B,C的對邊,滿足
abc,sinb sin a c sinacosc cosasinc 所以有sinasinc cosasinc 0 sina cosa sinc 2sin a 4 sinc,abc,c 0,a 0所以a 4 a 3 4。所以sinc c sina a sinc 2 2 2 2,sinc 1 2,ab...
在abc中內角abc的對邊分別為abc,已知c
sinc sin b a 2sin2a sin b a sin b a 2 2sinacosa2sinbcosa 4sinacosa 2cosa sinb 2sina 0 cosa 0或sinb 2sina 當cosa 0時,即a 90 可得b 30 所以b 2 3,所以s 1 2 bc 2 3 當...