高中數學畫原函式影象求詳細過程謝謝

2021-03-03 23:54:11 字數 5845 閱讀 8674

1樓:匿名使用者

作函式 y=xlnx的影象copy

解:定義域:x>0,即x∈(0,+∞);

x→0+limy=x→0+lim(xlnx)=x→0+lim[(lnx)/(1/x)]=x→0+lim[(1/x)/(-1/x2)]

=x→0+lim(-x)=0; y(1)=0; y(e)=e;

令y'=1+lnx=0,得lnx=-1,故

得駐點x=1/e; y(1/e)=(1/e)ln(1/e)=-1/e(極小值);

y''=1/x;x>0時y''>0,故在定義域(0,+∞)內曲線都是向上凹。

其影象如下:

2樓:善解人意一

先求出極值,再取幾個特殊值即可。待續

高中數學,導函式,導函式和原函式影象咋判斷,選擇題那種,最好有例子,詳細講解

3樓:匿名使用者

直接對原函bai

數求導,看導函式是什du麼,再畫導函式影象zhi。注意觀察dao導函式不可導點,如間斷點版。還要注權意原函式無意義的點。

y=√(x2-1) 次求導後為 y=-x/√(x2-1),x在+1、-1處無意義,故在此兩點取不到(可能為空心,也可能為無限逼近,如y=1/x,無限逼近於x=0.

求高中數學導數公式

4樓:匿名使用者

高中數學導數公式具體為:

1、原函式:y=c(c為常數)

導數: y'=0

2、原函式:y=x^n

導數:y'=nx^(n-1)

3、原函式:y=tanx

導數: y'=1/cos^2x

4、原函式:y=cotx

導數:y'=-1/sin^2x

5、原函式:y=sinx

導數:y'=cosx

6、原函式:y=cosx

導數: y'=-sinx

7、原函式:y=a^x

導數:y'=a^xlna

8、原函式:y=e^x

導數: y'=e^x

9、原函式:y=logax

導數:y'=logae/x

10、原函式:y=lnx

導數:y'=1/x

5樓:匿名使用者

幾種常見函式的導數:

1.c′=0 (c為常數)

2.(x∧n)′=nx∧(n-1)

3.(sinx)′=cosx

4.(cosx)′=-sinx

5.(lnx)′=1/x

6.(e∧x)′=e∧x

函式的和·差·積·商的導數:

(u±v)′=u′±v′

(uv)′=u′v+uv′

(u/v)′=(u′v-uv′)/v2

複合函式的導數:

(f(g(x))′=(f(u))′(g(x))′. u=g(x)

6樓:匿名使用者

在湘教版高中數學2-2就有了,基本初等函式導數公式主要有以下

y=f(x)=c (c為常數),則f'(x)=0

f(x)=x^n (n不等於0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等於1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logax f'(x)=1/xlna (a>0且a不等於1,x>0)

f(x)=lnx f'(x)=1/x (x>0)

f(x)=tanx f'(x)=1/cos^2 x

f(x)=cotx f'(x)=- 1/sin^2 x

導數運演算法則如下

(f(x)+/-g(x))'=f'(x)+/- g'(x)

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

7樓:出津鮑逸美

^u*v=u'v+uv';u+v=u'+v';u/v=u'v-uv'/v^2;常數導數等於0,sinx'=cosx,lnx'=1/x,x^a=ax^a-1,cosx'=-sinx,e^x=e^x,logax=1/xloga,a^x=a^xloga,

8樓:從珧承良弼

^函式導數公式

這裡將列舉幾個基本的函式的導數以及它們的推導過程:

1.y=c(c為常數)

y'=0

2.y=x^n

y'=nx^(n-1)

3.y=a^x

y'=a^xlna

y=e^x

y'=e^x

4.y=logax

y'=logae/x

y=lnx

y'=1/x

5.y=sinx

y'=cosx

6.y=cosx

y'=-sinx

7.y=tanx

y'=1/cos^2x

8.y=cotx

y'=-1/sin^2x

9.y=arcsinx

y'=1/√1-x^2

10.y=arccosx

y'=-1/√1-x^2

11.y=arctanx

y'=1/1+x^2

12.y=arccotx

y'=-1/1+x^2

在推導的過程中有這幾個常見的公式需要用到:

中g(x)看作整個變數,而g'(x)中把x看作變數』

2.y=u/v,y'=(u'v-uv')/v^2

3.y=f(x)的反函式是x=g(y),則有y'=1/x'

證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。

用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到

y=e^x

y'=e^x和y=lnx

y'=1/x這兩個結果後能用複合函式的求導給予證明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能匯出導函式的,必須設一個輔助的函式β=a^⊿x-1通過換元進行計算。由設的輔助函式可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,當a=e時有y=e^x

y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,當a=e時有y=lnx

y'=1/x。

這時可以進行y=x^n

y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以

6.類似地,可以匯出y=cosx

y'=-sinx。

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在對雙曲函式shx,chx,thx等以及反雙曲函式arshx,archx,arthx等和其他較複雜的複合函式求導時通過查閱導數表和運用開頭的公式與

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv'

均能較快捷地求得結果。

參考資料:

9樓:輝藏愚霜

規模突我才發現瞭解到

10樓:綦映任慧穎

常用導數公式

1.y=c(c為常數)

y'=0

2.y=x^n

y'=nx^(n-1)

3.y=a^x

y'=a^xlna

y=e^x

y'=e^x

4.y=logax

y'=(logae)/x

y=lnx

y'=1/x

5.y=sinx

y'=cosx

6.y=cosx

y'=-sinx

高中數學,導函式與原函式影象上有什麼關係?

11樓:孟淑蘭修香

影象上的關係是:導函式為正的區域,

原函式是單調遞增的;導函式為負的區域,原函回數的單答調遞減的;導函式為0的點,原函式有可能取得極值(需要檢驗)。differentiable意為可微,可導,即在某一區域內導數存在。

12樓:禾玉芬芮秋

導函式大於零時,原函式是的影象是上升的,原函式增大,單調遞增;導函式小於零,原函式影象下降,單調遞減...

高中數學,導函式與原函式影象上有什麼關係

13樓:匿名使用者

導函式是原函式的切線的斜率形成的函式,一般沒有影象上的直接的相關性

數學導數影象與原函式影象的關係,高中數學,導函式與原函式影象上有什麼關係?

導數大於零時,原bai函式呈 du增長趨勢,導數小於零時,zhi原函式dao呈減小趨勢 下降 若一點回的導數為0.但左右兩答邊導數的符號相同,即同正或同負,則不影響函式影象,若一點為0,兩邊異號,則該點為原函式極大值點或極小值點 左正右負為極大值點 反則為極小值點。請採納,謝謝!導數影象反映的是原函...

高中函式影象問題,高中數學函式影象題

解 1 如圖2 右上圖 對稱軸為y x 1,對稱中心為 1,0 解2 y 1 x,圖1,左上圖 向左平移兩個單位可以變成y 1 x 2 圖3,左下圖 向上平移3個單位可變成y 1 x 2 3 圖4,右下圖 樓上的說法有不少錯誤!y 2 x 1 是雙曲線,可以通過將y 2 x的圖象向右平移一個單位得到...

高中數學導數如圖求詳細過程謝謝,高中數學導數如圖求詳細過程謝謝

直接求導算極值 g x 1 2x2 alinx a 1 xg x x a x a 1 x2 a 1 x a x x 1 x a x 因為a 0 x a 捨去 或x 1 即是當x 1是g x 有最小值,因為1 e 回1 g x 在 0,1 e 單調答遞減,在 1 e,1 單調遞減在 1,e 單調遞增 ...