1樓:匿名使用者
解:∂z/∂x
=3yx²+ycosxy
∂²z/∂x²
=6xy-y²sinxy
∂z/∂y
=x³+xcosxy
∂²z/∂y²
=-x²cosxy
∂²z/∂x∂y
=3x²+cosxy-xysinxy
複合函式求二階偏導數,這一步轉換是怎麼做到的(紅色問好的那一步),求詳細過程
2樓:墨汁諾
鏈式求導 = chain rule。
複合函式的求導法則,u是ρ,θ的函式,ρ,θ又是x,y的函式,那麼αu/αx還是ρ,θ的函式,所以αu/αx是x,y的複合函式,中間變數是ρ,θ。
f 對 u 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,首先得先過 u、v 這一關。
也就是,fu 必須先對 u 求導,再乘以 u 對 x 的求導;
同時,fu 也必須對 v 求導,再乘以 v 對 x 的求導。
這兩部分加在一起,才完成了 fu 對 x 的偏導。
3樓:pasirris白沙
整體而言,這就是鏈式求導 = chain rule。
.1、f 對 u 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,首先得先過 u、v 這一關。
也就是,fu 必須先對 u 求導,再乘以 u 對 x 的求導;
同時,fu 也必須對 v 求導,再乘以 v 對 x 的求導。
這兩部分加在一起,才完成了 fu 對 x 的偏導。
2、f 對 v 求導後,依然是 u、v 的函式,所以,對 x 求偏導時,同樣首先得先過 u、v 這一關。
也就是,fv 必須先對 u 求導,再乘以 u 對 x 的求導;
同時,fv 也必須對 v 求導,再乘以 v 對 x 的求導。
這兩部分加在一起,才完成了 fv 對 x 的偏導。
3、前面的1、2合在一起考慮,就是樓主**上的求導過程了。
在多元函式的微積分學習中,
a、本來就比一元函式複雜、囉嗦很多,學起來吃力一點很正常;
b、教師、教科書上誤導比比皆是,再加上有些教師解說能力、邏輯能力、教學方法都不及格的教師佔絕對多數,學起來就會更困難一些。
加油吧!
只要方法對,持之以恆,就一定駕輕就熟、登堂入室!
求函式的二階偏導數(要過程)。
4樓:機智的墨林
點評:本題在求對y的二階偏導時需注意y為變數,結果比較複雜,可以稍微化簡。
求z=f(x+y,xy)的二階偏導數 需要詳細過程!!!是詳細哦
5樓:匿名使用者
另baiu=(x+y),v=(xy);
dz/dx=(dz/du)*(du/dx)+(dz/dv)*(dv/dx);
其中f'1=dz/du;f'2=dz/dv;
f"11:對f'1,這個二元函式對於u即(dux+y)這個自變數求zhi導;dao同理。回
。。。(當對x求導是答y看為常數)
(f"12=f"21(偏導數連續時))
d^2/z/dxdy=。。。。。。
求這個二階偏導數,要具體過程
6樓:匿名使用者
z=x²arctan(y/x)+∫y/(1+y²/x²)dx-xy
=x²arctan(y/x)-xy+∫y-y³/(x²+y²)dx
=x²arctan(y/x)-y²arctan(x/y)+c
求函式的二階偏導數
7樓:匿名使用者
^1、∂z/∂x=4x^3 -8xy^2
∂z/∂y=4y^3-8x^2y
所以二階偏導數為
∂z^2/∂x^2=12x^2-8y^2
∂z^2/∂x∂y= -16xy
∂z^2/∂y^2=12y^2 -8x^23、∂z/∂x=cos(xy) *y
∂z/∂y=cos(xy) *x
所以二階偏導數為
∂z^2/∂x^2= -[sin(xy)]^2 *y^2∂z^2/∂x∂y= -[sin(xy)]^2 *xy∂z^2/∂y^2= -[sin(xy)]^2 *x^2
二階混合偏導數是怎麼計算的 我有圖大家說下 謝謝了
8樓:匿名使用者
u = abcxyz
∂u/∂x = abcyz
∂u/∂y = abcxz
∂u/∂z = abcxy
舉個例子:設z=f(x+y2,3x-2y),f具有二階連續偏導數,求az/ax,a2z/axay解:az/ax=f1+3f2a2z/axay=(f11*2y-2f12)+3(f21.
2y-2f22)如果f1是z對第一個中間變數u的偏導數az/au*au/ax,那麼f1... 設z=f(x+y2,3x-2y),f具有二階連續偏導數,求az/ax,a2z/axay
複合函式二階求偏導題目求助,複合函式求二階偏導數,這一步轉換是怎麼做到的(紅色問好的那一步),求詳細過程
理解好複合函式的複合關係,這類問題就好解決了.這題裡z是一個複合函版數權 要知道它是f和u的複合函式,而u是x和y的二元函式。複合函式的鏈式求導法則就是弄清楚這個複合順序後,按順序求導就可以了。比如本題,先求z關於x的偏導,即先求f對u的導數,再求u對x的導數,得z x f u 2x,然後,再繼續求...
二階偏導數的幾何意義,二階偏導數的幾何意義
首先一階偏導,以z f x,y 為例,是固定一個元的值,專門以研究另外兩個元的變化關係,與物理的控制變數法相似。原本函式f代表了一個曲面,當一個元比如y固定的時候,就會在曲面上截出一條曲線,所以z f x,y0 就代表了這條曲線,如圖 藍色實線就是這條曲線,此時若對其求導,就是求這條曲線的導函式,即...
隱函式的二階導數,隱函式 二階導數
二階求導,就是把一階導再關於x求一次導 即對 x 2 z 求導 注意z是關於x y的函式,所以對分母求導是負的z關於x的偏導 第一個等號後面的是定義,沒什麼好解釋的 第二個等號後,好像就出結果了吧,1 2 z 求二階導的時bai候,就是把du上面那步的結果 zhix 2 z 再次對x求導dao數。因...