求z x的y次方的一階和二階偏導數

2021-04-21 15:38:00 字數 2223 閱讀 6399

1樓:秋風瑟瑟雨兮兮

這是一個冪指數函式 先求對函式關於x的一階偏導,則y為常數,(那這個函式版可以看權做指數函式) z'(x)=y^x·lny,再求對函式關於y的一階偏導(這個函式可以看做冪函式) z'(y)=x·y^(x-1) 然後繼續對關於x,y分別求二階偏導數 z'(xx)=y^x·ln²y z'(yy)=x(x-1)·y^(x-2) z'(xy)=xy^(x-1)lny+y^x·1/y...

求z=y^x的二階偏導數

2樓:你愛我媽呀

解答過程如下:

這是一個冪指數函式

先求對函式關於x的一階偏導,則y為常數,這個函式看做指數函式。z'(x)=y^x·lny,再求對函式關於y的一階偏導z'(y)=x·y^(x-1)。

然後繼續對關於x,y分別求二階偏導數:

z'(xx)=y^x·ln²y。

z'(yy)=x(x-1)·y^(x-2)。

z'(xy)=xy^(x-1)lny+y^x·1/y=y^(x-1)+xy^(x-1)lny。

z'(yx)=y^(x-1)+xy^(x-1)lny。

3樓:si陳小七

這是一個冪指數函式

先求對函式關於x的一階偏導,則y為常數,(那這個函式可以看做指數函式)

z'(x)=y^x·lny,再求對函式關於y的一階偏導(這個函式可以看做冪函式)

z'(y)=x·y^(x-1)

然後繼續對關於x,y分別求二階偏導數

z'(xx)=y^x·ln²y

z'(yy)=x(x-1)·y^(x-2)z'(xy)=xy^(x-1)lny+y^x·1/y=y^(x-1)+xy^(x-1)lny

z'(yx)=y^(x-1)+xy^(x-1)lny這個**應該看得更清楚些,希望可以幫到你們。

4樓:吉祿學閣

^^z=e^(xlny)

dz=e^(xlny)*(lnydx+xdy/y)z'|x=e^(xlny)*lny

z'|y=e^(xlny)*(x/y)

則:z''|x^2=e^(xlny)*(lny)*(lny)=(lny)^2*y^x;

z''|y^2=e^(xlny)*(x/y)*(*x/y)+e^(xlny)*(-x/y^2)

=e^(xlny)*(x/y^2)*(x-1)=x*(x-1)*y^(x-2)

z''|xy=e^(xlny)*(x/y)*lny+e^(xlny)*(1/y)

=e^(xlny)*(1/y)*(xlny+1)=y^(x-1)*(xlny+1)

5樓:匿名使用者

^z=y^x

z'x = lny y^x

z''xx = lny lny y^x

z'y = xy^(x-1)

z''yy = x(x-1)y^(x-2)z''xy = y^x/y * y^x + lny xy^(x-1) = y^(2x-1) + lny xy^(x-1)

已知u=f(x^2+y^+z^2)求一階和二階偏導數

6樓:曉龍修理

解題過程如下圖(因有專有公式,故只能截圖):

求偏導數的方法:

當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,我們稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。

此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。

按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。

設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域d 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數。

把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。

第六題的二階偏導咋求的一階偏導懂

一階導數2f1 1 y f2,接bai下去繼續對x求偏導數du,先使用zhi函式求dao導的四則運演算法版則,得2 f1 1 y f2 再求 f1 與 f2 這裡就要用權到複合運演算法則了,因為f1與f2還是x,y的複合函式 複合結構與f是一樣的 所以它的結果與求 z x時是類似的。f1 f11 2...

關於二階導與原函式的關係,函式一階導和2階導與函式影象關係是啥啊

可以得到原函式的凹凸性,當二階導數小於0則原函式呈凸型,大於0則為凹型,等於零時為原函式的拐點,是凹凸變化的點 二階導主要用於判斷函式單調性和凹凸性等,可以判斷函式拐點,也可用於證明不等式,中值定理等 函式一階導和2階導與函式影象關係是啥啊 一階導表示該原函式的影象的單調性 在某區間裡,一階導 0表...

複合函式二階求偏導題目求助,複合函式求二階偏導數,這一步轉換是怎麼做到的(紅色問好的那一步),求詳細過程

理解好複合函式的複合關係,這類問題就好解決了.這題裡z是一個複合函版數權 要知道它是f和u的複合函式,而u是x和y的二元函式。複合函式的鏈式求導法則就是弄清楚這個複合順序後,按順序求導就可以了。比如本題,先求z關於x的偏導,即先求f對u的導數,再求u對x的導數,得z x f u 2x,然後,再繼續求...