y x 2與y x 2圍城圖形繞y軸旋轉一週生成旋轉體體積多少

2021-05-26 08:27:08 字數 4234 閱讀 9819

1樓:匿名使用者

用微積分copy的方法。

先將座標軸調換一下位置(x、y軸對調,當然圖形也要對調哦)。

然後取一個極小的區間 [x,x+dx] 。

先求以y=x^2的旋轉體體積。把它看做是窄曲邊梯形繞x軸旋轉而成的薄片。薄片的體積近似於以y=x^2為底半徑、dx為高的扁圓柱的體積。則有v1=∫(4,0) π(x^2)^2 dx

然後算y=x+2旋轉成的體積v2=∫(4,2) π(x+2)^2 dx

最後用v1-v2=v得出答案

2樓:匿名使用者

解:旋轉體體積=∫<0,2>[2π

x(x+2)-2πx*x²]dx

=2π∫<0,2>(x²+2x-x³)dx=2π(x³/3+x²-x^回4/4)│<0,2>=2π(8/3+4-4)

=16π/3。答

3樓:匿名使用者

可以看成是一個大圓錐減去一個小圓錐,圓錐的體積是1/3*底面圓面積*高度。結果是8/3*3.14.

求由曲線y=x^2,y=x+2圍城的圖形繞y軸旋轉一週生成的旋轉體的體積v

4樓:匿名使用者

解:直線y=x+2與y軸的交點的座標為c(0,2);

令x²=x+2,得x²-x-2=(x+1)(x-2)=0,故得x₁=-1,x₂=2;

即直線y=x+1與拋物線y=x²的交點為a(-1,1),b(2,4);

直線段cb繞y軸旋轉一週所得旋轉體是一個園錐,該園錐的底面半徑=2,園錐高=2;

其體積=(8/3)π;

故所求旋轉體的體積v=【0,4】∫πx²dy-(8/3)π

=【0,2】π∫ydy-(8/3)π

=(π/2)y²【0,4】-(8/3)π

=8π-(8/3)π=(16/3)π

曲線y=x^2,y=x+2圍成的圖形繞y軸旋轉一週生成的旋轉體體積=?

5樓:庸人自擾

求由曲線y=x²,y=x+2圍城的圖形繞y軸旋轉一週生成的旋轉體的體積v

解:直線y=x+2與y軸的交點的座標為c(0,2);

令x²=x+2,得x²-x-2=(x+1)(x-2)=0,故得x₁=-1,x₂=2;

即直線y=x+1與拋物線y=x²的交點為a(-1,1),b(2,4);

直線段cb繞y軸旋轉一週所得旋轉體是一個園錐,該園錐的底面半徑=2,園錐高=2;

其體積=(8/3)π;

故所求旋轉體的體積v=【0,4】∫πx²dy-(8/3)π

=【0,2】π∫ydy-(8/3)π

=(π/2)y²【0,4】-(8/3)π

=8π-(8/3)π=(16/3)π

請採納。

6樓:文君復書

給π[(x+2)^2-x^4)在

y=x^2

y=x+2

的交點處。(-1,1)和(2,4)求定積分吧原函式是=π(1/3(x+2)^3-1/5x^5)在x∈【-1,2】求定積分。

7樓:摘紫色的星星

一個半球,減一個圓錐。

求由曲線y=x^2及x=y^2所圍圖形繞x軸旋轉一週所生成的旋轉體的體積。最好有圖形和計算的詳細過程,謝謝。 15

8樓:薔祀

解:易知圍成圖形為x定義在[0,1]上的兩條曲線分別為y=x^2及x=y^2,

旋轉體的體積為x=y^2,

繞y軸旋轉體的體積v1 減去 y=x^2繞y軸旋轉體的體積v2。

v1=π∫ydy,v2=π∫y^4dy 積分割槽間為0到1,v1-v2=3π/10.

注:函式x=f(y)繞y軸旋轉體的體積為v=π∫f(y)^2dy.

擴充套件資料

傳統定義

一般的,在一個變化過程中,假設有兩個變數x、y,如果對於任意一個x都有唯一確定的一個y和它對應,那麼就稱x是自變數,y是x的函式。x的取值範圍叫做這個函式的定義域,相應y的取值範圍叫做函式的值域 。

近代定義

設a,b是非空的數集,如果按照某種確定的對應關係f,使對於集合a中的任意一個數x,在集合b中都有唯一確定的數  和它對應,那麼就稱對映  為從集合a到集合b的一個函式,記作  或  。

其中x叫作自變數,  叫做x的函式,集合  叫做函式的定義域,與x對應的y叫做函式值,函式值的集合  叫做函式的值域,  叫做對應法則。其中,定義域、值域和對應法則被稱為函式三要素

定義域,值域,對應法則稱為函式的三要素。一般書寫為  。若省略定義域,一般是指使函式有意義的集合 。

函式過程中的這些語句用於完成某些有意義的工作——通常是處理文字,控制輸入或計算數值。通過在程式**中引入函式名稱和所需的引數,可在該程式中執行(或稱呼叫)該函式。

類似過程,不過函式一般都有一個返回值。它們都可在自己結構裡面呼叫自己,稱為遞迴。

大多數程式語言構建函式的方法裡都含有函式關鍵字(或稱保留字)。

參考資料

9樓:青春愛的舞姿

求曲線的y=x2的級別,以及y等於3x周圍的新藥課程旋轉一週所稱的旋轉固體的體積。

求由曲線y=x^2與y=x所圍成的平行圖形饒y軸旋轉一週後的大的旋轉體體積

10樓:匿名使用者

一個旋轉拋物面圍出的體積,減去一個圓錐。重點求y=x²,y=1,y軸所圍圖形繞y軸一週的體積

dv=πx²dy=πydy

v=π∫[0→1] ydy

=(π/2)y² |[0→1]

=π/2

下面計算y=x,y=1,y軸所圍三角形繞y軸一週所成的圓錐體積v1=(1/3)π

所求體積=π/2 - π/3 = π/6

希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的"選為滿意回答"按鈕,謝謝。

求由拋物線y=2-x^2與直線y=x,x=0圍成的平面圖形分別繞x軸y軸旋轉一週生成的旋轉體體積

11樓:景望亭巫辰

求由曲線y=x²,y=x+2圍城的圖形繞y軸旋轉一週生成的旋轉體的體積v直線y=x+2與y軸的交點的座標為c(0,2);令x²=x+2,得x²-x-2=(x+1)(x-2)=0,故得x₁=-1,x₂=2;即直線y=x+1與拋物線y=x²的交點為a(-1,1),b(2,4);直線段cb繞y軸旋轉一週所得旋轉體是一個園錐,該園錐的底面半徑=2,園錐高=2;其體積=(8/3)π;故所求旋轉體的體積v=【0,4】∫πx²dy-(8/3)π=【0,2】π∫ydy-(8/3)π=(π/2)y²【0,4】-(8/3)π=8π-(8/3)π=(16/3)π

12樓:涼念若櫻花妖嬈

求由拋物線y²=x和直線x-y=0所圍成的平面圖形分別繞x軸和y軸旋轉一週而得的轉體的體積

解:拋物線y²=x與直線y=x相交於(1,1).

繞x軸旋轉一週所得旋轉體的體積v₁=[0,1]π∫[(√x)²-x²]dx=[0,1]π∫[(x-x²)dx=π[x²/2-x³/3]︱[0,1]

=π(1/2-1/3)=π/6

繞y軸旋轉一週所得旋轉體的體積v₂=[0,1]π∫[y²-y⁴)dy=π[y³/3-(1/5)(y^5)]︱[0,1]=π[1/3-1/5]

=2π/15。

求由曲線y=x^2及x=y^2所圍圖形繞x軸旋轉一週所生成的旋轉體體積。 30

13樓:曉曉休閒

^解:易知bai圍成圖形為x定義在du[0,1]上的兩條曲線分zhi別為y=x^2及x=y^2,dao

旋轉體的體積

回為x=y^2,繞

答y軸旋轉體的體積v1減去y=x^2繞y軸旋轉體的體積v2。

v1=π∫ydy,v2=π∫y^4dy積分割槽間為0到1,v1-v2=3π/10.注:函式x=f(y)繞y軸旋轉體的體積為v=π∫f(y)^2dy。

14樓:厙鶴盍易容

圍成的圖形是0到bai1之間的像一片葉du子一樣的圖

根據zhi旋轉體的體積公式

v=∫(0→dao1)π[(√x)²-(x²)²]dx=π∫(0→1)(x-x^4)dx

=π(x^2/2-x^5/5)|(0,1)=π(1/2-1/5)=3π/10

15樓:光影歧路

交點為(0,0)(1,1),兩個曲線分別在這個區間積分,然後相減

求曲線y x 2,直線y 1所圍圖形分別繞軸與軸旋轉而成的旋

說明 此題bai應該是 du 求曲線y x 2,直線y 1所圍zhi圖形分別繞daox軸與y軸旋轉而成的旋轉體 專的體積屬.吧。若是這樣,解法如下。解 所圍圖形繞x軸旋轉而成的旋轉體的體積 2 0,1 1 x dx 2 1 1 5 8 5 所圍圖形繞y軸旋轉而成的旋轉體的體積 0,1 2 x 1 2...

用定積分求由拋物線y x 2和直線y x 2所圍成的圖形面積

y x 2 y x 2 先求交點 x 2 x 2 0 1,2,x 2 x 2dx 1 3 x 3 1 2 x 2x 1,2 7 2 圍成面積取絕對值 7 2 計算由曲線y 2 2x,y x 4所圍成的圖形的面積 先求交點,聯抄 立y 2x,y x 4解得襲a 2,2 b 8,4 再用y軸方向定積分 ...

求由曲線yx2和直線yx2,x0,x3圍成的圖形

解方程組 y x 2 y x 2 在x 0到x 3之間的解為x 2 y x 2與y x 2,x 0,x 3所圍成的面積ss x 2dx x 2 dx 第一個積分限是 版0 2,第二個是權2 3 結果 43 6 答題不易 滿意請果斷採納好評 你的認可是我最大的動力 祝你學習愉快 求由曲線y x 2與y...