1樓:匿名使用者
0<α<π/2
0+π/3<α+π/3<π/2+π/3
π/3<α+π/3<5π/6
cos(π/3+α)=-3/5 ,
sin(π/3+α)=4/5 ,
π/2+π/3<β+π/3<π+π/3
5π/6<β+π/3<4π/3
cos(π/3+α)=-3/5 ,
sin(2π/3-β)=5/13
sin(π-π/3-β)=5/13
sin(π/3+β)=5/13
cos(π/3+β)=-12/13
cos(β-α)
=cos[π/3+β-(π/3+α)]
=cos(π/3+β)cos(π/3+α)+sin(π/3+β)sin(π/3+α)
=-12/13*(-3/5)+5/13*4/5=36/65+20/65
=56/65
2樓:暗香沁人
∵0<α<π/2
∴π/3<π/3+α<5π/6
∵cos(π/3+α)=-3/5
∴sin(π/3+α)=√[i-cos^2(π/3+α)]=√(1-9/25)=√(16/25)=4/5
∵π/2<β<π
∴-π<-β<-π/2
∴-π/3<2π/3-β<π/6
∵sin(2π/3-β)=5/13
∴cos(2π/3-β)=√[i-sin^(2π/3-β)]=√(1-25/169)=√(144/169)=12/13
cos(β-α)=-cos[(2π/3-β)+(π/3+α)]=-[cos(2π/3-β)cos(π/3+α)-sin(2π/3-β)sin(π/3+α)]
=-[(12/13)*(-3/5)-(5/13)*(4/5)]=56/65
已知0比較2sin2與sin 1 cos
1全部sin 1 cos 2sin 2 cos 2 2sin 2 2 cos 2 sin 2 cot 2 設k cot 2 有 tan 2 1 k,tan 2tan 2 1 tan 2 2 2k k 2 1 sin 2 tan 2 tan 2 1 cos 2 1 tan 2 1 sin2 2 2si...
已知cos 4 5,cos3 5屬於 02 ,則sin
屬於 0,2 sin 1 cos 1 16 25 3 5 sin 1 9 25 4 5 sin sin sin cos sin cos 4 5 4 5 3 5 3 5 7 25 如果本題有什麼不明白可以追問,如果滿意記得采納如果有其他問題請採納本題後另發點選向我求助,答題不易,請諒解,謝謝。祝學習進...
已知函式f x 3cos 2x 2cosx sinx sin 2x求詳細解答過程
f x 3 cosx 3 2sinxcosx sinx 2 sin2x 2 cosx 2 1 sin2x cos2x 2 2sin 2x 4 2 1 最小正週期為t 2 2 週期為k k是不為0的整數。2 2k 2 2x 4 2k 2,則k 3 8 2k 2 2x 4 2k 3 2,則k 8 3 當...