凹凸性與函式一階導數二階導數的關係

2021-05-19 18:37:00 字數 4730 閱讀 4994

1樓:五七六一零四二

二階導數大於零為凹(下凸),二階導數小於零為凸(上凸),凹凸性與一階導數無關

函式的凹凸性為什麼要用二階導數

2樓:晚夏落飛霜

一階導數反映的是函式斜率,而二階導數反映的是斜率變化的快慢,表現在函式的影象上就是函式的凹凸性。

f′′(x)>0,開口向上,函式為凹函式,f′′(x)<0,開口向下,函式為凸函式。

凸凹性的直觀理解:

設函式y=f(x)在區間i上連續,如果函式的曲線位於其上任意一點的切線的上方,則稱該曲線在區間i上是凹的;如果函式的曲線位於其上任意一點的切線的下方,則稱該曲線在區間i上是凸的。

確定曲線y=f(x)的凹凸區間和拐點的步驟:

1、確定函式y=f(x)的定義域;

2、求出在二階導數f"(x);

3、求出使二階導數為零的點和使二階導數不存在的點;4、判斷或列表判斷,確定出曲線凹凸區間和拐點。

3樓:angela韓雪倩

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

擴充套件資料:

設函式f(x)在區間i上定義,若對i中的任意兩點x1和x2,和任意λ∈(0,1),都有 f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等號嚴格成立,即"<"號成立,則稱f(x)在i上是嚴格凹函式。

如果"<="換成">="就是凸函式。類似也有嚴格凸函式。

設f(x)在區間d上連續,如果對d上任意兩點a、b恆有f((a+b)/2)<(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凹的(或凹弧);如果恆有f((a+b)/2)>(f(a)+f(b))/2

那麼稱f(x)在d上的圖形是(向上)凸的(或凸弧)

這個定義從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。 同理可知,如果函式影象在這兩點之間的部分總在連線這兩點線段的上方,那麼這個函式就是凸函式。

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凸函式的充要條件是f''(x)<=0;f(x)在區間i上是凹函式的充要條件是f''(x)>=0;

琴生(jensen)不等式(也稱為詹森不等式):(注意前提、等號成立條件)設f(x)為凸函式,則f[(x1+x2+......+xn)/n]≤[f(x1)+f(x2)+......+f(xn)]/n(下凸);設f(x)為凹函式,f[(x1+x2+......+xn)/n]≥[f(x1)+f(x2)+......+f(xn)]/n(上凸),稱為琴生不等式。

加權形式為:f[(a1*x1+a2*x2+......+an*xn)]≤a1f(x1)+a2f(x2)+......+anf(xn)(下凸);f[(a1*x1+a2*x2+......+an*xn)]≥a1f(x1)+a2f(x2)+......+anf(xn)(上凸),其中ai≥0(i=1,2,......,n),且a1+a2+......+an=1.

如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方。

結合一階、二階導數可以求函式的極值。當一階導數等於0,而二階導數大於0時,為極小值點。當一階導數等於0,而二階導數小於0時,為極大值點;當一階導數和二階導數都等於0時,為駐點。

4樓:

我是一線高中數學教師,希望能幫到你。

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

通俗的講,一個函式求了一階導數(如大於o),只能說明是遞增,但不知是遞增的越來越快還是越來越慢(可以類比加速度的思想),只有求了二階導數才知道遞增的速度,即凹凸性。

函式的凹凸性是怎樣定義的?(二階導數)

5樓:小史i丶

1、定義為:

設函式f(x)在區間i上有定義,若對i中的任意兩點x1和x2,和任意λ∈(0,1),都有:

f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2),

則稱f為i上的凸函式,若不等號嚴格成立,即「>」號成立,則稱f(x)在i上是嚴格凸函式。

同理,如果">=「換成「<=」就是凹函式。類似也有嚴格凹函式。

2、從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。同理可知,如果函式影象在這兩點之間的部分總在連線這兩點線段的上方,那麼這個函式就是凸函式。

直觀上看,凸函式就是圖象向上突出來的。

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凸函式的充要條件是f''(x)<=0;f(x)在區間i上是凹函式的充要條件是f''(x)>=0。

6樓:八葉梧桐

最簡單的方法是從凹凸本身出發

這也是其名稱由來

最好的辦法是用原始定義(任意fx)得

實際上證明不難

比二階導數容易

7樓:匿名使用者

不同的書有不同的定義,有的說二階導數大於0是凹;有的又說二階導數小於0是凹.要看自己用的是什麼書

二階導數與函式的凹凸性問題

8樓:匿名使用者

記得高數書上有的。

這裡僅我個人理解的,要是不對就一笑而過吧。

因為,已經說了,f(x)有凹凸性,所以,f(x)或者為先減後增,或者為先增後減。

當二階導數大於0,說明一階導數單調遞增。根據f(x)不是先減後增就是先增後減,所以,在此情況下,f(x)只能為先減後增了。所以,在二階導數大於0時,函式為凹函式。

同理可證二階導數小於0時,函式為凸函式。

僅為個人理解哦!不負責任的哦!

9樓:潛春遊鬆

二階大於零,說明一階導數單調增,一階函式單調,說明函式斜率遞增,而凹函式就是這樣,同理樂得凸函式,有疑問樂意**。

10樓:考今

函式凹凸性與二次導數有關

如果函式某點的一階導數等於零

該點的二階導數若大於0,則函式在該點是極小值,函式在該點附近是下凹的若該點的二階導數若小於0,則函式在該點是極大值,函式在該點附近是上凸的

若等於0,則該點為拐點

若函式的二階導數恆大於0,函式是下凹的

若函式的二階導數恆小於0,則函式上凸的

從函式的幾何意義來分析:

因為隨著凹凸變化,曲線的切線斜率會出現相應的改變。

1在凹最低處或凸最高處,切線斜率為0,即一階導數為02在凹圖象最低處左右,一階導數從最低處左方的》0趨於右方的<0,這一過程二階導數》0

在凸圖象最高處左右,一階導數從最高處左方的<0趨於右方的》0,這一過程二階導數<0

因此根據二階導數可以判斷函式的凹凸性質

11樓:廖北伯

f'(a)>0時, f(x)在a附近漸增.

同理, f"(a)>0時, f'(x)在a附近漸增.

f'(u)就是f(x)在x=u的切線斜率.

f'(x)漸增就是f(x)的切線逆時針轉, 也就是凹函式.

f"(a)<0依此類推.

函式的凹凸性是怎樣定義的?(二階導數)

12樓:霜寒雲郎玉

定義:設函式f(x)在區間i上定義,若對i中的任意兩點x1和x2,和任意λ∈內(0,1),都有

f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),則稱f(x)是i上的凹容函式。

若不等號嚴格成立,即"<"號成立,則稱f(x)在i上是嚴格凹函式。

如果"<="換成">="就是凸函式。類似也有嚴格凸函式。

這個定義從幾何上看就是:

在函式f(x)的圖象上取任意兩點,如果函式圖象在這兩點之間的部分總在連線這兩點的線段的下方,那麼這個函式就是凹函式。

直觀上看,凸函式就是圖象向上突出來的。比如y=-x^2,y=lnx.

如果函式f(x)在區間i上二階可導,則f(x)在區間i上是凹函式的充要條件是f''(x)>=0;f(x)在區間i上是凸函式的充要條件是f''(x)<=0;

參考資料:《數學分析》

f(x)=x2是凹函式。

為什麼二階導數能判斷函式凹凸性?

13樓:匿名使用者

因為隨著凹凸變化,曲線的切線斜率會出現相應的改變。

1在凹最低處或凸最高內處,切線斜率為0,即一階容導數為02在凹圖象最低處左右,一階導數從最低處左方的》0趨於右方的<0,這一過程二階導數》0

在凸圖象最高處左右,一階導數從最高處左方的<0趨於右方的》0,這一過程二階導數<0

因此根據二階導數可以判斷函式的凹凸性質

一階與二階導數,一階導數,二階導數,三階導數各自的作用是幹什麼的系統詳細一點,或者給個連結也行

從一bai階導數 可以看du 出原函式的增減性 zhi.而從二階導數則dao可以看出原函式的 增減性專的增屬減性 即原函式的 彎曲方向和程度 舉例 原函式y x 2 一階導數 y 2x 在區間x 0 上y 0,它表示此時原函式遞減 二階導數 y 2 在區間x 0 上y 2 0,它表示此時原函式圖象向...

隱函式的二階導數,隱函式 二階導數

二階求導,就是把一階導再關於x求一次導 即對 x 2 z 求導 注意z是關於x y的函式,所以對分母求導是負的z關於x的偏導 第一個等號後面的是定義,沒什麼好解釋的 第二個等號後,好像就出結果了吧,1 2 z 求二階導的時bai候,就是把du上面那步的結果 zhix 2 z 再次對x求導dao數。因...

函式的一階 二階導數都等於零,三階導數不為零能否判斷該點是極點?或者能否用四階導數不為零判斷該點

函式的一階 二階導數都等於零,三階導數不為零可以判斷該點絕對不是極點。如果三階導數也是0 而四階導數不為0,那麼 該點肯定是極點。且大於0是極小點 小於0的極大點。只有在導數存在的時候才能說極值點是導數為0的點。有些點導數壓根不存在,但它是極值點。比如y x 這個函式在x 0這一點,它比周圍任何點函...