f在x0處連續是f在x0處左右導數存在的什麼條件

2021-03-03 20:41:50 字數 2463 閱讀 1974

1樓:匿名使用者

必要但不充

bai分的條件

必要性如果duf(x)在x0處有左

zhi導數,dao則版必然左連續權;有右導數,則必然右連續。左右導數都有,則左右連續都成立,那麼函式在x0點連續。

所以f(x)在x=x0處連續,是f(x)在x=x0處左右導數都存在的必要條件

不充分性

例如函式f(x)=x的3次方根,這個函式在x=0點處連續。但是在x=0點處的左右導數都不存在(都是無窮大)。

所以f(x)在x=x0處連續,不是f(x)在x=x0處左右導數都存在的充分條件。

所以f(x)在x=x0處連續,是f(x)在x=x0處左右導數都存在的必要但不充分的條件

函式f(x)在x=x0處左右導數均存在,則f(x)在x=x0處連續,為什麼。

2樓:

左導數存在左連續,右導數存在右連續

左右導數均存在,左右均連續,所以 f(x)在x=x0處連續

3樓:betsy如夢令

f(x)在x0處連續的充分必要條件是f(x)在x0既左連續又右連續,這個是連續的定義

函式z=f(x,y)在點(x0,y0)處連續是它在該點偏導數存在的什麼條件

4樓:匿名使用者

選a必要抄非充分條件

如果函式

襲z在某一點bai(x0,y0)處不連續,那麼它du

在這一點的偏導數是不zhi存在dao的。而且,即使在某一點連續,也不能保證它在該點一定存在偏導數,所以選a。

x方向的偏導

設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域d 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。

y方向的偏導

同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。

5樓:匿名使用者

選a必要非充分條件

如果函式z在某一點(x0,y0)處不連續,那麼它在這一點的偏導數是不存在的。而且,即使在某一點連續,也不能保證它在該點一定存在偏導數,所以選a。

6樓:

偏導存在未必連續,比如偏x存在,那就關於x連續(根據一元函式的性質),但是整個不連續;連續也未必可導,偏導當然也未必存在。所以選d

如果f(x)在x0處左右導數存在,則其在x0處一定連續嗎?為什麼?

7樓:匿名使用者

第一個,不一定,連續的定義還得 f(x)在x0處有意義,且左右極限相等。單單導數相等,代表不了什麼。

第二個,極限為無窮也就是極限不存在。

高數f(x)在x=0處連續是什麼意思?

8樓:不是苦瓜是什麼

說明在這個點的左極限等於這個點的右極限等於這個點的函式值。

limx趨近0負fx等於limx趨近0正fx等於f(0)。

設y=f(x)是一個單變數函式, 如果y在x=x[0]處存在導數y'=f'(x),則稱y在x=x[0]處可導。

如果一個函式在x[0]處可導,那麼它一定在x[0]處是連續函式

如果一個函式在x[0]處連續,那麼它在x[0]處不一定可導

函式可導定義:

(1)若f(x)在x0處連續,則當a趨向於0時, [f(x+a)-f(x)]/a存在極限, 則稱f(x)在x0處可導.

(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導.

如果一個函式的定義域為全體實數,即函式在上都有定義,函式在定義域中一點可導需要一定的條件是:函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的一個充要條件(極限存在,它的左右極限存在且相等)推導而來

一元函式中可導與可微等價,它們與可積無關。

多元函式可微必可導,而反之不成立。

即:在一元函式裡,可導是可微的充分必要條件;

在多元函式裡,可導是可微的必要條件,可微是可導的充分條件。

f(x)在x0處可導的充要條件是x0左導數和右導數存在且相等,這句話為什麼是對的。不是應該加上x0

9樓:上海皮皮龜

左導數的定義是這點左鄰域內點的函式值f(x)減f(x0)除以(x-x0)後的極限(x趨向x0) 所以左右導數的定義是以f(x0)有意義為前提的 所以不言自明

fx在x0處可導,fx在x0處不一定連續請舉出返

不一定經典反例f x x 2sin 1 x 定義f 0 0。f 0 0,當x趨於0時 f x 2xsin 1 x cos 1 x 極限不存在。f x 在x 0處可導,則f x 在x 0處一定連續嗎 考研數學上遇到類似的問題,現在明白了。第一句 f x 在x 0處可導,由導數定義知,f 0 f 0 也...

yx在x0處為什麼不可微函式yxx在x0處為什麼不可導

這個回答有問題,雖說一元函式可微必可導,但是題主明顯是 不理解微分定義和可微判定的關係,你直接說f x x 在x 0處不可導,這種東西,隨便一個學過高數的都懂,且答非所問 微分定義是 y a x x 即 lim y a x x 0 是否成立,x 0 後式相同 化簡上式即 lim y x a 0 由於...

yxaa為常數在點x0處連續嗎

應該是連續的,這個函式關於x軸對稱的。應該是它的倒數不連續吧。是連續的 答案是錯的 啊 已知x 0是函式y ax?ln 1 x x bsinx的可去間斷點,則常數a,b的取值範圍是 a.a 1,b為任意實數b.因為x 0是y ax?ln 1 x x bsinx 的可去間斷點 故lim x 0f x ...