fx在x0處可導,fx在x0處不一定連續請舉出返

2021-03-03 22:07:53 字數 3834 閱讀 2251

1樓:暴血長空

不一定經典反例f(x)=x^2sin(1/x),定義f(0)=0。

f'(0)=0,

當x趨於0時

f'(x)=2xsin(1/x)-cos(1/x)極限不存在。

f(x)在x=0處可導,則f'(x)在x=0處一定連續嗎

2樓:

考研數學上遇到類似的問題,現在明白了。

第一句:f(x)在x=0處可導,由導數定義知,f'+(0)=f'-(0),也就是在x=0處的左右導數相等。

第二句:f'(x)在x=0處連續,由連續的定義知,f'+(0)=f'-(0)=f'(0),相當於把導函式看成普通函式,在x=0處的左極限=右極限=這個點的函式值。

這兩者都是導函式的左右極限相等,但是前者不管導函式在x=0處存不存在,後者是導函式在x=0處一定存在且與左右極限相等。

通常用分段函式舉反例:

f(x)=x2sin(1/x) x≠0 ,

f(x)=0 x=0,

這樣,f(x)在x=0處連續,且f(x)在x=0處的導數為 f'(0)=0,而導函式f'(x)=2xsin(1/x)-cos(1/x) 中,f'+(0)與f'-(0)不存在,所以f(x)在x=0處可導。但是f'(x)在x=0處不連續。

綜上:f(x)在x=0處可導,f'(x)在x=0處不一定連續。

3樓:匿名使用者

不一定經典反例f(x)=x^2sin(1/x),定義f(0)=0。

f'(0)=0,

當x趨於0時

f'(x)=2xsin(1/x)-cos(1/x)極限不存在。

4樓:匿名使用者

大佬們,是不是這種意思,導函式連續要求,f'(0-)=f'(0+)=f'(0)(f'(0)也就是導函式在這點的定義),而函式在此點可導,只要求f'(0-)=f'(0+)即可,因此二者並無聯絡。

5樓:匿名使用者

對,對---------可導一定連續。

6樓:匿名使用者

是的,可導一定連續,連續不一定可導。

7樓:哈哈哈

f(x)可導,代表的是f(x)連續,如果要f'(x)連續,則應該有「f'(x)可導」這個條件,f'(x)可導即f(x)有二階導函式。

8樓:輕塵雨隨

這個問題我在考研的數學裡面看到了,也很疑惑,有個題目是這樣的當x≠0時f(x)=x^(4/3)sin(1/x),當x=0時,f(x)=0,答案說此f(x)在x=0處可導,然後另一個一樣的題說此f'(x)在x=0處不連續,我就納悶兒了,f'(x)在x=0處可導不就是存在f'(0)嗎?而f'(0)存在的條件不就是左右極限f'(0-)=f'(0+)嗎?既然f'(0-)=f'(0+)了不就是f'(x)在x=0上連續了嗎?

樓上的人好像沒踩到你的點,樓主現在會了嗎?能給我解釋下下嗎??我超疑惑。。。

函式 y=f(x)在點x0 處可導,證明它在點 x0處一定連續,並舉例說明其逆不真.

9樓:匿名使用者

函式 y=f(x)在點x0 處可導,有

lim(x→x0)[f(x)-f(x0)]/(x-x0) = f'(x0),

於是lim(x→x0)[f(x)-f(x0)]= lim(x→x0)*(x-x0)

= f'(x0)*0 = 0,

即 f 在點x0處連續。

其逆不真。例如函式f(x) = |x|在x = 0點處連續但不可導。

以上幾乎每一部教材都會有的,動手翻翻書就有,沒必要在這兒提問。

10樓:匿名使用者

這是高數最基本的定理啊....還要證明麼....

如果函式f(x)在點x0處可導,則它在點x0處必定連續.該說法是否正確

11樓:答疑老度

這是正確的。

如果它在點x0處連續,則函式f(x)在點x0處必定可導。錯誤,比如f(x)=x的絕對值,在xo=0時不連續,

因為它的左右極限不相等。

導數的求導法則:

由基本函式的和、差、積、商或相互複合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:

1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合。

2、兩個函式的乘積的導函式:一導乘二+一乘二導。

3、兩個函式的商的導函式也是一個分式:(子導乘母-子乘母導)除以母平方。

4、如果有複合函式,則用鏈式法則求導。

導數求導口訣:

1,對倒數(e為底時直接倒數,a為底時乘以1/lna)。

2,指不變(特別的,自然對數的指數函式完全不變,一般的指數函式須乘以lna)。

3,正變餘,餘變正。

4,切割方(切函式是相應割函式(切函式的倒數)的平方)。

5,割乘切,反分式。

6,常為零,冪降次。

12樓:冰洌

如果它在點x0處連續,則函式f(x)在點x0處必定可導。錯誤,比如f(x)=x的絕對值,在xo=0時不連續,因為它的左右極限不相等

若f(x)在x=x0處不連續 則f(x)在x=x0處不可導 這種說法對嗎

13樓:不曾年輕是我

不一定經典反例f(x)=x^2sin(1/x),定義f(0)=0。 f'(0)=0,當x趨於0時 f'(x)=2xsin(1/x)-cos(1/x)極限不存在。

高數f(x)在x0處可導,則必在該點連續,但未必可微對不對

14樓:匿名使用者

設y=f(x)是一個單變數函式, 如果

y在x=x[0]處存在導數y'=f'(x),則稱y在x=x[0]處可導。

如果一個函式在x[0]處可導,那麼它一定在x[0]處是連續函式

如果一個函式在x[0]處連續,那麼它在x[0]處不一定可導

函式可導定義:

(1)若f(x)在x0處連續,則當a趨向於0時, [f(x+a)-f(x)]/a存在極限, 則稱f(x)在x0處可導.

(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導.

函式可導的條件

如果一個函式的定義域為全體實數,即函式在上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件是:

函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的一個充要條件(極限存在,它的左右極限存在且相等)推導而來

一元函式中可導與可微等價,它們與可積無關。

多元函式可微必可導,而反之不成立。

即:在一元函式裡,可導是可微的充分必要條件;

在多元函式裡,可導是可微的必要條件,可微是可導的充分條件。

15樓:匿名使用者

胡說。對一元函式來說,可導和可微是等價的,怎麼會有你的結論?

16樓:裝訂線內勿答題

不對,一定可微,可導必可微

若f(x)在x0處可導,則y=f(x)在點x0處連續:反之不成立。(判斷題)

17樓:牛肉丸子星

這是錯的。連續必然可導,

但可導未必連續。比如,當x小於等於2時,f(x)=2x;當版x大於2時,f(x)=3;則函式在x=2處可導權,導數是2,但不連續,因為當x從左邊無限趨近2時,f(x)=4,當從右邊無限趨近2時,f(x)=3,兩邊不相等,所以不連續。

18樓:努力的糖糖

正確,可導必連續,連續不一定可導

若函式f(x)在x0處不可導,則函式f(x)在x0處不存在切線

如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。所以不可導就沒有切線。可導一定連續 證明 函式f x 在x0處可導,f x 在x0臨域有定義,對於任意小的 0,存在 x 1 2f x0 0,使 f x0 x f x0 這可從導數定義推出 若函式y f...

f x 在x0處可導的充要條件是x0左導數和右導數存在且相等,這句話為什麼是對的。不是應該加上x

左導數的定義是這點左鄰域內點的函式值f x 減f x0 除以 x x0 後的極限 x趨向x0 所以左右導數的定義是以f x0 有意義為前提的 所以不言自明 f x 在x0處可導的充要條件是左右導數存在且相等。那麼f x x x不等於0 在0處的左右導數是否都存在?你問的是不是 f x x x 0 1...

請敘述函式fx在x0點可導和fx在x0點連續的關係

如果f x 在x0點可導,那麼f x 在x0點就必然連續。如果f x 在x0點連續,那麼f x 在x0點不一定可導。所以f x 在x0點可導,是f x 在x0點連續的充分但非必要條件。函式f x 在x x0點處連續是f x 在x 由於連續未必可導,可導必然連續,則 函式f x 在x x0點處連續是f...