1樓:demon陌
區別:一、
1.發散與收斂對於數列和函式來說,它就只是一個極限的概念,一般來說如果它們的通項的值在變數趨於無窮大時趨於某一個確定的值時這個數列或是函式就是收斂的,所以在判斷是否是收斂的就只要求它們的極限就可以了.對於證明一個數列是收斂或是發散的只要運用書上的定理就可以了。
2.對於級數來說,它也是一個極限的概念,但不同的是這個極限是對級數的部分和來說的,在判斷一個級數是否收斂只要根據書上的判別法就行了。
二、拓展資料:
收斂數列
函式收斂
定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。
對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|收斂的定義方式很好的體現了數學分析的精神實質。
如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......
+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數。
記rn(x)=s(x)-sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0
迭代演算法的斂散性
1.全域性收斂
對於任意的x0∈[a,b],由迭代式xk+1=φ(xk)所產生的點列收斂,即其當k→∞時,xk的極限趨於x*,則稱xk+1=φ(xk)在[a,b]上收斂於x*。
2.區域性收斂
若存在x*在某鄰域r=,對任何的x0∈r,由xk+1=φ(xk)所產生的點列收斂,則稱xk+1=φ(xk)在r上收斂於x*。
2樓:匿名使用者
高等數學收斂函式和發散函式的區別是不一樣的。
高等數學:收斂和發散是不是隻針對數列?函式裡不說收斂和發散是嗎?
3樓:匿名使用者
函式也有發散和收斂
只是數列用的多一些
如有疑問,可追問!
4樓:匿名使用者
函式也有收斂和發散的說法
怎樣理解高數中的發散與收斂
5樓:獨孤求勝
1.發散與收斂對於數列和函式來說,它就只是一個極限的概念,一般來說如果它們的通項的值在變數趨於無窮大時趨於某一個確定的值時這個數列或是函式就是收斂的,所以在判斷是否是收斂的就只要求它們的極限就可以了.對於證明一個數列是收斂或是發散的只要運用書上的定理就可以了。
2.對於級數來說,它也是一個極限的概念,但不同的是這個極限是對級數的部分和來說的,在判斷一個級數是否收斂只要根據書上的判別法就行了
6樓:摩羯
在數學分析中,與收斂(convergence)相對的概念就是發散(divergence).發散函式的定義是:令f(x)為定義在r上的函式,如果存在實數b>0,對於任意給出的c>0,任意x1,x2滿足|x1-x2|0,對任意x1,x2滿足0。
簡單的說有極限(極限不為無窮)就是收斂,沒有極限(極限為無窮)就是發散。
例如:f(x)=1/x 當x趨於無窮是極限為0,所以收斂。
f(x)= x 當x趨於無窮是極限為無窮,即沒有極限,所以發散。
7樓:匿名使用者
發散與收斂 要根據判定法來判斷 記住那些判定方法就好了
8樓:狗屁數學
例如直線,曲線就是收斂的,感覺就是緊湊的感覺。
例如散落的大米就是發散的。不能夠收斂在一點或一條曲線上。
高數 收斂發散怎麼判斷
9樓:南霸天
收斂函式:若函式在定義域的每一點都收斂,則通常稱函式是收斂的.函式在某點收斂,是指當自變數趨向這一點時,其函式值的極限就等於函式在該點的值.
有界函式:對於定義域中的任意一個值,相應的函式值都在一個區間內變化(也就是函式值的絕對值總小於某一個固定值),那函式就是有界的.收斂函式一定有界(上下界分別就是函式的最大和最小值)但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2
10樓:7zone射手
例如積分後,可以得到定值或者無窮。就可以判斷了
怎麼判斷函式和數列是收斂或發散的
11樓:demon陌
1、設數列,如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數n,使得n>n時,恆有|xn-a|2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。
3、加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來如 1/n * sin(1/n) 用1/n^2 來代替
4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。
擴充套件資料:
收斂級數對映到它的和的函式是線性的,從而根據哈恩-巴拿赫定理可以推出,這個函式能擴張成可和任意部分和有界的級數的可和法,這個事實一般並不怎麼有用,因為這樣的擴張許多都是互不相容的,並且也由於這種運算元的存在性證明訴諸於選擇公理或它的等價形式,例如佐恩引理,所以它們還都是非構造的。
發散級數這一分支,作為分析學的領域,本質上關心的是明確而且自然的技巧,例如阿貝爾可和法、切薩羅可和法、波萊爾可和法以及相關物件。維納陶伯型定理的出現標誌著這一分支步入了新的階段,它引出了傅立葉分析中巴拿赫代數與可和法間出乎意料的聯絡。
發散級數的求和作為數值技巧也與插值法和序列變換相關,這類技巧的例子有:帕德近似、levin類序列變換以及與量子力學中高階微擾論的重整化技巧相關的依序對映。
收斂數列
函式收斂
定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。
對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|收斂的定義方式很好的體現了數學分析的精神實質。
如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......
+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數,簡稱(函式項)級數
對於每一個確定的值x0∈i,函式項級數 ⑴ 成為常數項級數u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 這個級數可能收斂也可能發散。
如果級數(2)發散,就稱點x0是函式項級數(1)的發散點。
函式項級數(1)的收斂點的全體稱為他的收斂域 ,發散點的全體稱為他的發散域 對應於收斂域內任意一個數x,函式項級數稱為一收斂的常數項 級數 ,因而有一確定的和s。
這樣,在收斂域上 ,函式項級數的和是x的函式s(x),通常稱s(x)為函式項級數的和函式,這函式的定義域就是級數的收斂域,並寫成s(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函式項級數 ⑴ 的前n項部分和 記作sn(x),則在收斂域上有lim n→∞sn(x)=s(x)
記rn(x)=s(x)-sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0
12樓:wm未末
收斂函式:若函式在定義域的每一點都收斂,則通常稱函式是收斂的。函式在某點收斂,是指當自變數趨向這一點時,其函式值的極限就等於函式在該點的值。
有界函式指的是對於定義域中的任意一個值,相應的函式值都在一個區間內變化,也就是函式值的絕對值總小於某一個固定值,那函式就是有界的。
收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。
判斷數列是否收斂或者發散:
1、設數列,如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數n,使得n>n時,恆有|xn-a|2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。
3、加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來如 1/n * sin(1/n) 用1/n^2 來代替
4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。
拓展資料:
函式極限是高等數學最基本的概念之一,導數等概念都是在函式極限的定義上完成的。
函式極限可以分成x→∞,x→+∞,x→-∞,x→xo,,而運用ε-δ定義更多的見諸於已知極限值的函式極限證明題中。掌握這類證明對初學者深刻理解運用極限定義大有裨益。
以x→xo 的極限為例,f(x) 在點xo 以a為極限的定義是: 對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式:
|f(x)-a|<ε ,那麼常數a就叫做函式f(x)當 x→x。時的極限。
問題的關鍵在於找到符合定義要求的 ,在這一過程中會用到一些不等式技巧,例如放縮法等。2023年的研究生考試試題中,更是直接考察了考生對定義的掌握情況。
13樓:關鍵他是我孫子
判斷函式是否收斂或者發散:
收斂函式:若函式在定義域的每一點都收斂,則通常稱函式是收斂的。函式在某點收斂,是指當自變數趨向這一點時,其函式值的極限就等於函式在該點的值。
有界函式指的是對於定義域中的任意一個值,相應的函式值都在一個區間內變化,也就是函式值的絕對值總小於某一個固定值,那函式就是有界的。
收斂函式一定有界,但是有界函式不一定收斂,如f(x)在x=0處f(0)=2,在其他x處f(x)=1,那麼f(x)在x=0處就不是收斂的,那麼f(x)就不是收斂函式,但是f(x)是有界的,因為1≤f(x)≤2。
判斷數列是否收斂或者發散:
1、設數列,如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數n,使得n>n時,恆有|xn-a|2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,xn是否趨向一個常數,可是有時xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。
3、加減的時候,把高階的無窮小直接捨去
如 1 + 1/n,用1來代替
乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來
如 1/n * sin(1/n) 用1/n^2 來代替
4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。
拓展資料:
收斂數列具有的性質:
1、唯一性。如果數列xn收斂,每個收斂的數列只有一個極限。
2、有界性。定義:設有數列xn , 若存在m>0,使得一切自然數n,恆有|xn|3、保號性。
如果數列收斂於a,且a>0(或a<0),那麼存在正整數n,當n>n時,都有xn>0(或xn<0)。
高等數學收斂函式乘收斂函式結果函式是收斂函式這個結論正確嗎?比如
樓主想過沒有有交錯級數這種東西。比如an 1 n 1 n 1 3 bn 1 n 1 n 兩個函式相乘收斂,其中一個函式收斂,則另一個函式一定收斂嗎?當然不一定啦。根據函式收斂的定義,如果當x 的時候,函式有極限 必須是有限常數 那麼這個函式就算收斂的。所以這樣兩個函式 f x 1 x g x x 當...
高等數學函式極限問題,大學高等數學函式極限問題,求詳細解答
如滿意,請採納。謝謝 tan x sin x sin3x sinx cosx sinx x 3 sinx 1 cosx cosx x3 x x 2 2 x 3 1 2 大學高等數學函式極限問題,求詳細解答 選a這是關於 函式極限與數列極限關係的題目是定理 如果lim x x0 f x 存在,xn 為...
高等數學的函式與極限高等數學函式極限
剛開始學高數,問題還不算嚴重,不要擔心啦。現在意識到很不錯了,完全來的及,我給你把重點和考試要求給你,祝你學習進步。重點內容 1 函式極限的求法,注意單側極限與極限存在的充要條件。2 知道極限的四則運演算法則 3 熟練掌握兩個重要極限 4 關於無窮小量 1 掌握無窮小量的定義,要特別注意極限過程不可...