1樓:匿名使用者
當x→0時,xlnx的極限時0
分析:當x→0時,lnx→-∞,所以該極限是0×∞型的極限,可以經過變形,利用洛必達法則求極限。
解:原式=lim[lnx/(1/x)]
=lim[(1/x)/(-1/x²)]……【利用洛必達法則】=lim[-x]
=0洛必達法則簡介如下:
2樓:江東子弟
這是一題0×∞的題目,一般思路是化為0比0型或者∞比∞型,再使用洛必達法則。
此題可以先化成lnx/(1/x),也可化成x/(1/(lnx))。出於求導的方便,我們使用前者。
lnx/(1/x)的分子分母分別求導,分子求導為1/x,分母求導為-1/x²,求導之後合在一起為(1/x)/(-1/x²)=-x
因此可以得出,此題極限為0
3樓:省略是金
用泰勒公式去分解是核心。xlnx無窮乘以0,因為lnx的泰勒公式只針對x趨於1不適用想到洛必達
化成無窮比無窮形式
lnx/(1/x)上下同時取導,(1/x)/(-1/x²)再取極限於是得洛必達為0
將x變為x-1 x趨於1
4樓:超級死神剋星
求函式極限的方法有:
(1)代入求值法
要注意非0數/0=∞
而對於0/0、∞/∞、0*∞、∞-∞、0^0、∞^0、1^∞、log0(0)、log+∞(+∞)、log1(1)型的不定式要用以下方法去求解:
(2)約零因子法
(3)分子分母同除以最大項
(4)分子分母有理化
(5)無窮小乘以有界量等於無窮小
(6)等價無窮小,泰勒公式(等價無窮小就出自於泰勒公式)
在使用泰勒公式替代時,如果分子或分母是幾個單獨的函式的乘積時,各自只需替換到最低階的泰勒公式;而如果分子是幾個單獨的函式相加減時,先確定分母的關於x(x→0時是x,x→a時是x-a)的無窮小的階數,而分子中的每個單獨的函式的泰勒公式的替代要使得x的最高次數與分母的關於x(x→0時是x,x→a時是x-a)的無窮小的階數相一致,才能使替代準確無誤。
(7)兩個分式相減的情形要通分
(8)洛必達法則
洛必達法則要注意必須分子與分母都是0或者都是∞時才可以使用,否則會導致錯誤;如果洛必達法則使用後得到的極限是不存在的(振盪型的),不代表原極限就不存在,如lim(x→∞)sin x/x就是這個例子。
(9)換底公式、冪指型公式(x^y=e^(y*ln x))、三角公式、雙曲三角函式公式等等。
而這一題:可將xln x變形為ln x/(1/x),再用洛必達法則,得到-x,當x趨於0時,答案就是0。
xlnx的極限 x趨向0 要步驟哦
5樓:匿名使用者
當x→0時,xlnx的極限時0
解題過程:
原式等於lnx除以1/x,分子分母都是無窮,用洛必達法則法則,求導得到結果是-x,x趨於0,那麼-x=0,故極限就是0。
洛必達法則要注意必須分子與分母都是0或者都是∞時才可以使用,否則會導致錯誤;如果洛必達法則使用後得到的極限是不存在的(振盪型的),不代表原極限就不存在,如lim(x→∞)sin x/x就不可以。
求函式極限的方法有:
1、泰勒公式
(含有e^x的時候,尤其是含有正餘旋的加減的時候要特變注意!)e^x,sinx,cos,ln(1+x)對題目簡化有很好幫助。
2、面對無窮大比上無窮大形式的解決辦法。
取大頭原則最大項除分子分母,看上去複雜處理很簡單。
3、無窮小與有界函式的處理辦法
面對複雜函式時候,尤其是正餘弦的複雜函式與其他函式相乘的時候,一定要注意這個方法。面對非常複雜的函式可能只需要知道它的範圍結果就出來了!
4、夾逼定理
(主要對付的是數列極限)這個主要是看見極限中的函式是方程相除的形式,放縮和擴大。
5、等比等差數列公式應用
對付數列極限,q絕對值符號要小於1。
6、各項的拆分相加
(來消掉中間的大多數。) 對付的還是數列極限可以使用待定係數法來拆分化簡函式。
6樓:匿名使用者
答案是零。
原式等於lnx除以1/x,分子分母都是無窮,用l,hospital法則,求導得到結果是-x,x趨於0,那麼-x=0,極限就是0
7樓:墨軒
lnx比x分之一,用洛必達法則求導。成1/x比負的x平方分之一。上下一約,成負的x.所以x趨於0為0
8樓:匿名使用者
x趨向0 xlnx的極限=lim-x/x=-1
求x→0時xlnx的極限
9樓:匿名使用者
解:原來式=lim(x->0)[lnx/(1/x)]=lim(x->0)[(lnx)'/(1/x)'] (∞源/∞型極限bai
,應用du羅比達法則zhi)
=lim(x->0)[(1/x)/(-1/x²)] (求導dao數)
=lim(x->0)(-x)=0。
x趨於0時,xlnx的極限不就是0嗎,x
10樓:匿名使用者
當x→0時,x㏑x→0·-∞為不定式,
我們有無窮小與有界函式的的乘積仍是無窮小。㏑x在x→0時是無界的,不能應用上面的結論。
11樓:匿名使用者
是的,但應用洛必達法則求,不能直接得到
limx趨近於0+ xlnx怎麼算求詳細過程?
12樓:兔斯基
x趨於零時,
原極限=limlnx/(1/x)[∞/∞型,洛必達法則)=lim1/x/(一1/x^2)
=0望採納
13樓:匿名使用者
lim(x->0+) xlnx
=lim(x->0+) lnx/(1/x)=lim(x->0+) (1/x)/(-1/x^2)=lim(x->0+) -x=0
當x0時,fxxasin1x當x0時,fx
在x 不等於0時,函式是初等函式,所以連續,要使得函式在整個定義域上連續,只需考版慮x 0.a 0,x a為無權窮小,sin1 x有界,x asin1 x的極限當x趨於0時是0等於f 0 函式連續 當a 0,x asin1 x的極限不存在,所以函式在x 0不連續當a 當x 0時,f x x asin...
求fx131x當x0時的左右極限。為什麼x
解 題中函式的表 bai達式du是不是 f x 1 3 1 x 1 3 1 x zhi若是,則解答如下。左dao極限是指當x從回 0 的方向趨於0時的極限。即左 答極限 lim x 0 f x 同理,右極限 lim x 0 f x x 0 時,1 x 3 1 x 0。左極限lim x 0 1 3 1...
如何理解xlnx的極限是0?x趨於0時,lnx趨向無窮的速
可以看成lnx 1 x 因此你可以對比lnx和1 x在x趨近於0時它們趨近於無窮的速度。比較方式可以通專過求屬一階導數,lnx 1 x,1 x 1 x 2,由此可見1 x趨近於無窮的速度更快,因此lnx 1 x 趨近於0 xlnx的極限 x趨向0 要步驟哦 當x 0時,xlnx的極限時0 解題過程 ...